Direkt zum Inhalt
Suchergebnisse 211 - 240 von 329

Umstellen einer Gleichung

Grundwissen

  • Formeln musst du manchmal umstellen, um die gesuchte Größe berechnen zu können.
  • Hilfreich als Merkregel ist dabei das entsprechende Größendreieck.

Zum Artikel
Grundwissen

  • Formeln musst du manchmal umstellen, um die gesuchte Größe berechnen zu können.
  • Hilfreich als Merkregel ist dabei das entsprechende Größendreieck.

Zum Artikel Zu den Aufgaben

Impuls und Impulserhaltungssatz

Grundwissen

  • Der Impuls ist das Produkt von Masse und Geschwindigkeit eines Körpers: \(\vec{p}=m\cdot\vec{v}\).
  • In einem abgeschlossenen System ist der Impuls erhalten (Impulserhaltungssatz).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Impuls ist das Produkt von Masse und Geschwindigkeit eines Körpers: \(\vec{p}=m\cdot\vec{v}\).
  • In einem abgeschlossenen System ist der Impuls erhalten (Impulserhaltungssatz).

Zum Artikel Zu den Aufgaben

Kraftwandler

Grundwissen

  • Kraftwandler ändern den Angriffspunkt, die Richtung, den Betrag oder mehrere dieser Eigenschaften einer Kraft.
  • typische Beispiele für Kraftwandler sind Seil, Hebel, Rolle und Flaschenzug.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Kraftwandler ändern den Angriffspunkt, die Richtung, den Betrag oder mehrere dieser Eigenschaften einer Kraft.
  • typische Beispiele für Kraftwandler sind Seil, Hebel, Rolle und Flaschenzug.

Zum Artikel Zu den Aufgaben

Kräfteaddition

Grundwissen

  • Wirken zwei oder mehr Kräfte auf einen Körper, so kannst du diese durch eine einzige resultierende Kraft \(\vec{F_{\rm{r}}}\) ersetzen.
  • Die Richtung und den Betrag (die Stärke) der resultierenden Kraft kannst du grafisch ermitteln.
  • Zeigen die angreifenden Kräfte in unterschiedliche Richtungen, so addierst du diese mittels Kräfteparallelogramm oder Kräftedreieck.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wirken zwei oder mehr Kräfte auf einen Körper, so kannst du diese durch eine einzige resultierende Kraft \(\vec{F_{\rm{r}}}\) ersetzen.
  • Die Richtung und den Betrag (die Stärke) der resultierenden Kraft kannst du grafisch ermitteln.
  • Zeigen die angreifenden Kräfte in unterschiedliche Richtungen, so addierst du diese mittels Kräfteparallelogramm oder Kräftedreieck.

Zum Artikel Zu den Aufgaben

Kraft auf stromführende Leiter im Magnetfeld

Grundwissen

  • Auf stromdurchflossene Leiter im Magnetfeld wirkt im Allgemeinen eine Kraft.
  • Die Kraftrichtung kannst du mit der Drei-Finger-Regel der rechten Hand bestimmen.
  • Wenn Stromrichtung und Magnetfeldrichtung parallel bzw. antiparallel verlaufen, wirkt keine Kraft.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auf stromdurchflossene Leiter im Magnetfeld wirkt im Allgemeinen eine Kraft.
  • Die Kraftrichtung kannst du mit der Drei-Finger-Regel der rechten Hand bestimmen.
  • Wenn Stromrichtung und Magnetfeldrichtung parallel bzw. antiparallel verlaufen, wirkt keine Kraft.

Zum Artikel Zu den Aufgaben

Feldlinien

Grundwissen

  • Elektrische Feldlinien veranschaulichen modellhaft die Struktur des E-Feldes.
  • Je dichter die Feldlinien, desto stärker das E-Feld.
  • Elektrische Feldlinien zeigen immer in die Richtung der Kraft auf einen positiv geladenen Probekörper.

Zum Artikel
Grundwissen

  • Elektrische Feldlinien veranschaulichen modellhaft die Struktur des E-Feldes.
  • Je dichter die Feldlinien, desto stärker das E-Feld.
  • Elektrische Feldlinien zeigen immer in die Richtung der Kraft auf einen positiv geladenen Probekörper.

Zum Artikel Zu den Aufgaben

Ladung und Strom - Fortführung

Grundwissen

  • Die Fläche im Zeit-Stromstärke-Diagramm entspricht der geflossenen Ladungsmenge \(\Delta Q\).
  • Somit kann auch die geflossene Ladungsmenge bei variabler Stromstärke \(I\) ermittelt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Fläche im Zeit-Stromstärke-Diagramm entspricht der geflossenen Ladungsmenge \(\Delta Q\).
  • Somit kann auch die geflossene Ladungsmenge bei variabler Stromstärke \(I\) ermittelt werden.

Zum Artikel Zu den Aufgaben

Wechselstromwiderstände

Grundwissen

  • Der Wechselstromwiderstand eines Elementes ist der Quotient aus Effektivspannung und Effektivstromstärke: \(X=\frac{U_{\rm{eff}}}{I_{\rm{eff}}}\)
  • Man unterscheidet zwischen Wechselstromwiderständen von OHMschen Leitern \(X_R\), an kapazitiven Bauelementen (Kondensatoren) \(X_C\) und an induktiven Bauelementen (Spulen) \(X_L\).
  • Zusätzlich verursachen Kondensatoren und Spulen Phasenverschiebungen der über dem Bauelement abfallenden Spannung gegenüber der Stromstärke1.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Wechselstromwiderstand eines Elementes ist der Quotient aus Effektivspannung und Effektivstromstärke: \(X=\frac{U_{\rm{eff}}}{I_{\rm{eff}}}\)
  • Man unterscheidet zwischen Wechselstromwiderständen von OHMschen Leitern \(X_R\), an kapazitiven Bauelementen (Kondensatoren) \(X_C\) und an induktiven Bauelementen (Spulen) \(X_L\).
  • Zusätzlich verursachen Kondensatoren und Spulen Phasenverschiebungen der über dem Bauelement abfallenden Spannung gegenüber der Stromstärke1.

Zum Artikel Zu den Aufgaben

Zeigerdiagramme in der Wechselstromtechnik

Grundwissen

  • In der Wechselstromtechnik werden häufig Zeigerdiagramme zur Darstellung von Stromstärke und Spannung genutzt.
  • Dabei dreht sich ein Zeiger, dessen Länge der Amplitude (z.B. \(\hat I\)) entspricht, mit der  Winkelgeschwindigkeit \(\omega\) gegen den Uhrzeigersinn.
  • Der Momentanwert der jeweiligen Größe kann dann im Zeigerdiagramm an der vertikalen Achse abgelesen werden.

Zum Artikel
Grundwissen

  • In der Wechselstromtechnik werden häufig Zeigerdiagramme zur Darstellung von Stromstärke und Spannung genutzt.
  • Dabei dreht sich ein Zeiger, dessen Länge der Amplitude (z.B. \(\hat I\)) entspricht, mit der  Winkelgeschwindigkeit \(\omega\) gegen den Uhrzeigersinn.
  • Der Momentanwert der jeweiligen Größe kann dann im Zeigerdiagramm an der vertikalen Achse abgelesen werden.

Zum Artikel Zu den Aufgaben

Effektivwerte von Wechselstrom und -spannung

Grundwissen

  • Der Effektivwert der Spannung einer Wechselspannung bzw. der Stromstärke eines Wechselstroms ist diejenige zeitlich konstante Spannung bzw. Stromstärke, die in der gleichen Zeit die gleiche Energie liefert.
  • Der Effektivwert \(U_{\rm{eff}}\) einer sinusförmigen Wechselspannung mit dem Scheitelwert \(\hat U\) ist \(U_{\rm{eff}}=\frac{\hat U}{\sqrt{2}}\)
  • Der Effektivwert \(I_{\rm{eff}}\) eines sinusförmigen Wechselstroms mit dem Scheitelwert \(\hat I\) ist \(I_{\rm{eff}}=\frac{\hat I}{\sqrt{2}}\)

Zum Artikel
Grundwissen

  • Der Effektivwert der Spannung einer Wechselspannung bzw. der Stromstärke eines Wechselstroms ist diejenige zeitlich konstante Spannung bzw. Stromstärke, die in der gleichen Zeit die gleiche Energie liefert.
  • Der Effektivwert \(U_{\rm{eff}}\) einer sinusförmigen Wechselspannung mit dem Scheitelwert \(\hat U\) ist \(U_{\rm{eff}}=\frac{\hat U}{\sqrt{2}}\)
  • Der Effektivwert \(I_{\rm{eff}}\) eines sinusförmigen Wechselstroms mit dem Scheitelwert \(\hat I\) ist \(I_{\rm{eff}}=\frac{\hat I}{\sqrt{2}}\)

Zum Artikel Zu den Aufgaben

Elektronenstrahlablenkröhre

Grundwissen

  • In einer Elektronenstrahlablenkröhre werden Elektronen mit Anfangsgeschwindigkeit \(v_0\) senkrecht in ein homogenes E-Feld eines Plattenkondensators gebracht.
  • Die Elektronen bewegen sich im Bereich des homogenen E-Feldes auf einer Parabelbahn.
  • Die Bahnkurve wird beschrieben durch die Gleichung \(y = \frac{1}{4} \cdot \frac{U_{\rm{K}}}{U_{\rm{B}} \cdot d} \cdot {x^2}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • In einer Elektronenstrahlablenkröhre werden Elektronen mit Anfangsgeschwindigkeit \(v_0\) senkrecht in ein homogenes E-Feld eines Plattenkondensators gebracht.
  • Die Elektronen bewegen sich im Bereich des homogenen E-Feldes auf einer Parabelbahn.
  • Die Bahnkurve wird beschrieben durch die Gleichung \(y = \frac{1}{4} \cdot \frac{U_{\rm{K}}}{U_{\rm{B}} \cdot d} \cdot {x^2}\)

Zum Artikel Zu den Aufgaben

Flächen- und Volumenberechnung

Grundwissen

  • Flächeneinheiten besitzen immer die Hochzahl \(2\), z.B. \(\rm{cm^2}\), Volumeneinheiten die Hochzahl \(3\), z.B. \(\rm{cm^3}\).
  • Die Umrechnungszahl von einer Flächeneinheit zur benachbarten ist \(100\).
  • Die Umrechnungszahl von einer Volumeneinheit zur benachbarten ist \(1000\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Flächeneinheiten besitzen immer die Hochzahl \(2\), z.B. \(\rm{cm^2}\), Volumeneinheiten die Hochzahl \(3\), z.B. \(\rm{cm^3}\).
  • Die Umrechnungszahl von einer Flächeneinheit zur benachbarten ist \(100\).
  • Die Umrechnungszahl von einer Volumeneinheit zur benachbarten ist \(1000\).

Zum Artikel Zu den Aufgaben

Durchschnitts- und Momentangeschwindigkeit

Grundwissen

  • Die Durchschnittsgeschwindigkeit ist \(\bar v = \frac{{\Delta x}}{{\Delta t}} = \frac{{{x_{\rm{E}}} - {x_{\rm{A}}}}}{{{t_{\rm{E}}} - {t_{\rm{A}}}}}\), wobei "A" jeweils für Anfang und "E" für Ende steht.
  • Wenn das Zeitintervall \(\Delta t\) möglichst klein, nahezu Null wird, erhält man die Momentangeschwindigkeit \(v = \frac{{\Delta x}}{{\Delta t}}\;\;{\rm{mit}}\;\;\Delta t \to 0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Durchschnittsgeschwindigkeit ist \(\bar v = \frac{{\Delta x}}{{\Delta t}} = \frac{{{x_{\rm{E}}} - {x_{\rm{A}}}}}{{{t_{\rm{E}}} - {t_{\rm{A}}}}}\), wobei "A" jeweils für Anfang und "E" für Ende steht.
  • Wenn das Zeitintervall \(\Delta t\) möglichst klein, nahezu Null wird, erhält man die Momentangeschwindigkeit \(v = \frac{{\Delta x}}{{\Delta t}}\;\;{\rm{mit}}\;\;\Delta t \to 0\).

Zum Artikel Zu den Aufgaben

Mittlere und Momentanbeschleunigung

Grundwissen

  • Die mittlere Beschleunigung ist definiert als Geschwindigkeitsänderung geteilt durch die dafür benötigte Zeit, kurz \(\overline{a} = \frac{v_e - v_a}{t_e - t_a}\)
  • Negative Beschleunigungen entstehen wenn die Änderung der Geschwindigkeit \(\Delta v\) negativ ist.
  • Für die Momentanbeschleunigung \(a\) wählt man ein möglichst kleines Zeitintervall: \(a= \frac{{\Delta v}}{{\Delta t}}{\text{ mit }}\Delta t \to 0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die mittlere Beschleunigung ist definiert als Geschwindigkeitsänderung geteilt durch die dafür benötigte Zeit, kurz \(\overline{a} = \frac{v_e - v_a}{t_e - t_a}\)
  • Negative Beschleunigungen entstehen wenn die Änderung der Geschwindigkeit \(\Delta v\) negativ ist.
  • Für die Momentanbeschleunigung \(a\) wählt man ein möglichst kleines Zeitintervall: \(a= \frac{{\Delta v}}{{\Delta t}}{\text{ mit }}\Delta t \to 0\).

Zum Artikel Zu den Aufgaben

Flaschenzug

Grundwissen

  • Beim Flaschenzug spielt die Anzahl \(n\) der tragenden Seile eine wichtige Rolle.
  • Je größer die Zahl der tragenden Seile ist, desto weniger Zugkraft \(F_Z\) musst du aufbringen, um eine Last \(F_L\) anzuheben. Dafür verlängert sich die notwendige Zugstrecke \(s_Z\), um eine Last die Strecke \(s_L\) anzuheben.
  • Für die Zugkraft gilt \(F_Z=\frac{1}{n}\cdot F_L\), für die Zugstrecke hingegen \(s_Z=n\cdot s_L\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Flaschenzug spielt die Anzahl \(n\) der tragenden Seile eine wichtige Rolle.
  • Je größer die Zahl der tragenden Seile ist, desto weniger Zugkraft \(F_Z\) musst du aufbringen, um eine Last \(F_L\) anzuheben. Dafür verlängert sich die notwendige Zugstrecke \(s_Z\), um eine Last die Strecke \(s_L\) anzuheben.
  • Für die Zugkraft gilt \(F_Z=\frac{1}{n}\cdot F_L\), für die Zugstrecke hingegen \(s_Z=n\cdot s_L\).

Zum Artikel Zu den Aufgaben

Gleitreibung

Grundwissen

  • Gleitreibung tritt auf, wenn ein Körper durch eine Kraft gegen einen anderen Körper gedrückt wird und der eine Körper relativ zu dem anderen Körper gleitet.
  • Die Gleitreibungskraft \(\vec F_{\rm{GR}}\) wirkt immer entgegen der Bewegungsrichtung des Körpers.
  • Für den Betrag der Gleitreibungskraft gilt \(F_{\rm{GR}}=\mu _{\rm{GR}}\cdot F_{\rm{N}}\), wobei \(\mu _{\rm{GR}}\) der Gleitreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Gleitreibung tritt auf, wenn ein Körper durch eine Kraft gegen einen anderen Körper gedrückt wird und der eine Körper relativ zu dem anderen Körper gleitet.
  • Die Gleitreibungskraft \(\vec F_{\rm{GR}}\) wirkt immer entgegen der Bewegungsrichtung des Körpers.
  • Für den Betrag der Gleitreibungskraft gilt \(F_{\rm{GR}}=\mu _{\rm{GR}}\cdot F_{\rm{N}}\), wobei \(\mu _{\rm{GR}}\) der Gleitreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben

Rollreibung

Grundwissen

  • Rollreibung tritt auf, wenn z.B. ein Rad durch eine Kraft gegen eine Unterlage gedrückt wird und das Rad über die Unterlage rollt.
  • Die Rollreibungskraft \(\vec F_{\rm{RR}}\) wirkt immer entgegen der Bewegungsrichtung des Rades.
  • Für den Betrag der Rollreibungskraft gilt \(F_{\rm{RR}}=\mu _{\rm{RR}}\cdot F_{\rm{N}}\), wobei \(\mu _{\rm{RR}}\) der Rollreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Rollreibung tritt auf, wenn z.B. ein Rad durch eine Kraft gegen eine Unterlage gedrückt wird und das Rad über die Unterlage rollt.
  • Die Rollreibungskraft \(\vec F_{\rm{RR}}\) wirkt immer entgegen der Bewegungsrichtung des Rades.
  • Für den Betrag der Rollreibungskraft gilt \(F_{\rm{RR}}=\mu _{\rm{RR}}\cdot F_{\rm{N}}\), wobei \(\mu _{\rm{RR}}\) der Rollreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben

Haftreibung

Grundwissen

  • Haftreibung tritt auf, wenn ein Körper durch eine Kraft gegen einen anderen Körper gedrückt wird, der eine Körper relativ zu dem anderen Körper ruht und auf einen der Körper eine Zugkraft \(\vec F_{\rm{Z}}\) wirkt.
  • Bis zur maximalen Haftreibungskraft \(F_{\rm{HR,max}}\) sind Zugkraft und Haftreibungskraft gleich groß, aber entgegengesetzt gerichtet, sodass der Körper in Ruhe bleibt.
  • Für die maximale Haftreibungskraft gilt \({F_{\rm{HR,max}}} = \mu _{\rm{HR}} \cdot {F_{\rm{N}}}\), wobei \(\mu _{\rm{HR}}\) der Haftreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Haftreibung tritt auf, wenn ein Körper durch eine Kraft gegen einen anderen Körper gedrückt wird, der eine Körper relativ zu dem anderen Körper ruht und auf einen der Körper eine Zugkraft \(\vec F_{\rm{Z}}\) wirkt.
  • Bis zur maximalen Haftreibungskraft \(F_{\rm{HR,max}}\) sind Zugkraft und Haftreibungskraft gleich groß, aber entgegengesetzt gerichtet, sodass der Körper in Ruhe bleibt.
  • Für die maximale Haftreibungskraft gilt \({F_{\rm{HR,max}}} = \mu _{\rm{HR}} \cdot {F_{\rm{N}}}\), wobei \(\mu _{\rm{HR}}\) der Haftreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben

Was ist Bionik?

Grundwissen
Grundwissen

Der Lotuseffekt - selbstreinigende Oberfläche

Grundwissen
Grundwissen

Auftrieb

Grundwissen
Grundwissen

Viskose Reibung

Grundwissen

  • Viskose Reibung beschreibt die Reibung eines Körpers bei der Bewegung in einer Flüssigkeit (oder einem Gas).
  • Mathematisch kann die viskose Reibung gut für Kugeln beschrieben werden.
  • Es gilt \(F_{\rm{VR}}=6\cdot \pi\cdot r\cdot \eta\cdot v\), wobei \(\eta\) die dynamische Viskosität der Flüssigkeit ist \(r\) der Radius der Kugel und \(v\) ihre Geschwindigkeit. 

Zum Artikel
Grundwissen

  • Viskose Reibung beschreibt die Reibung eines Körpers bei der Bewegung in einer Flüssigkeit (oder einem Gas).
  • Mathematisch kann die viskose Reibung gut für Kugeln beschrieben werden.
  • Es gilt \(F_{\rm{VR}}=6\cdot \pi\cdot r\cdot \eta\cdot v\), wobei \(\eta\) die dynamische Viskosität der Flüssigkeit ist \(r\) der Radius der Kugel und \(v\) ihre Geschwindigkeit. 

Zum Artikel Zu den Aufgaben

Flugfrüchte

Grundwissen
Grundwissen

Leichtbauweise

Grundwissen
Grundwissen

Stehende elektromagnetische Welle (Simulation)

Grundwissen

  • Stehende elektromagnetische Wellen entstehen z.B. durch Überlagerung einer einlaufenden Welle mit der in der Metallplatte induzierten Welle.
  •  Der Abstand zweier benachbarter Knoten der stehenden Welle ist gleich der halben Wellenlänge der ursprünglichen, fortschreitenden Welle.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Stehende elektromagnetische Wellen entstehen z.B. durch Überlagerung einer einlaufenden Welle mit der in der Metallplatte induzierten Welle.
  •  Der Abstand zweier benachbarter Knoten der stehenden Welle ist gleich der halben Wellenlänge der ursprünglichen, fortschreitenden Welle.

Zum Artikel Zu den Aufgaben

Luftreibung

Grundwissen

  • Die Luftreibung nimmt quadratisch mit der Geschwindigkeit zu.
  • Die Querschnittsfläche \(A\) des Körpers und der von der Form abhängige Luftwiderstandsbeiwert \(c_{\rm{w}}\) beeinflussen die Luftreibung.
  • Mathematisch gilt: \(F_{\rm{LR}}=\frac{1}{2}\cdot A\cdot c_{\rm{w}}\cdot \rho_{\rm{Luft}}\cdot v^2\)

Zum Artikel
Grundwissen

  • Die Luftreibung nimmt quadratisch mit der Geschwindigkeit zu.
  • Die Querschnittsfläche \(A\) des Körpers und der von der Form abhängige Luftwiderstandsbeiwert \(c_{\rm{w}}\) beeinflussen die Luftreibung.
  • Mathematisch gilt: \(F_{\rm{LR}}=\frac{1}{2}\cdot A\cdot c_{\rm{w}}\cdot \rho_{\rm{Luft}}\cdot v^2\)

Zum Artikel Zu den Aufgaben

Gesetz von AMONTONS

Grundwissen

  • Wird eine feste Menge (konstante Teilchenzahl \(N\)) eines Idealen Gases auf einem konstanten Volumen \(V\) gehalten, während sich die Temperatur oder der Druck der Gasmenge ändern, so spricht man von einer isochoren Zustandsänderung der Gasmenge.
  • Bei derartigen isochoren Zustandsänderungen ist der Druck \(p\) proportional zur Temperatur \(T\)\[p \sim T\;\;\;\rm{bzw.}\;\;\;\frac{p}{T} \;\rm{ist\;konstant}\;\;\;\rm{bzw.}\;\;\;\frac{p_1}{T_1} = \frac{p_2}{T_2}\]

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wird eine feste Menge (konstante Teilchenzahl \(N\)) eines Idealen Gases auf einem konstanten Volumen \(V\) gehalten, während sich die Temperatur oder der Druck der Gasmenge ändern, so spricht man von einer isochoren Zustandsänderung der Gasmenge.
  • Bei derartigen isochoren Zustandsänderungen ist der Druck \(p\) proportional zur Temperatur \(T\)\[p \sim T\;\;\;\rm{bzw.}\;\;\;\frac{p}{T} \;\rm{ist\;konstant}\;\;\;\rm{bzw.}\;\;\;\frac{p_1}{T_1} = \frac{p_2}{T_2}\]

Zum Artikel Zu den Aufgaben

Volumenänderung von Flüssigkeiten

Grundwissen

  • Flüssigkeiten dehnen sich in der Regel beim Erwärmen unterschiedlich stark aus.
  • Die Volumenänderung hängt vom Raumausdehnungskoeffizienten der Flüssigkeit ab.
  • Wasser verhält sich bei niedrigen Temperaturen knapp über dem Gefrierpunkt anomal.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Flüssigkeiten dehnen sich in der Regel beim Erwärmen unterschiedlich stark aus.
  • Die Volumenänderung hängt vom Raumausdehnungskoeffizienten der Flüssigkeit ab.
  • Wasser verhält sich bei niedrigen Temperaturen knapp über dem Gefrierpunkt anomal.

Zum Artikel Zu den Aufgaben

Volumenänderung von Gasen

Grundwissen

  • Gase dehnen sich beim Erwärmen stark aus.
  • Verschiedene Gase zeigen bei ihrem Ausdehnungsverhalten kaum Unterschiede.
  • Bei Messungen ist auf konstanten Druck zu achten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Gase dehnen sich beim Erwärmen stark aus.
  • Verschiedene Gase zeigen bei ihrem Ausdehnungsverhalten kaum Unterschiede.
  • Bei Messungen ist auf konstanten Druck zu achten.

Zum Artikel Zu den Aufgaben

Anomalie des Wassers

Grundwissen

  • Wasser besitzt seine größte Dichte bei 4 °C.
  • Unterhalb von 4 °C nimmt die Dichte wieder ab.
  • Wasser besitzt eine größere Dichte als Eis.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wasser besitzt seine größte Dichte bei 4 °C.
  • Unterhalb von 4 °C nimmt die Dichte wieder ab.
  • Wasser besitzt eine größere Dichte als Eis.

Zum Artikel Zu den Aufgaben