Direkt zum Inhalt
Suchergebnisse 91 - 120 von 158

Drittes KEPLERsches Gesetz

Grundwissen

  • Die Quadrate (zweite Potenzen) der Umlaufzeiten zweier Planeten um das gleiche Zentralgestirn verhalten sich wie die Kuben (dritte Potenzen) der großen Bahnhalbachsen.
  • Für alle Planeten, die um das gleiche Zentralgestirn kreisen, haben die Quotienten aus dem Quadrat der Umlaufzeit und der dritten Potenz der großen Bahnhalbachse den selben Wert \(C\). Dabei muss die Masse des Zentralgestirns deutlich größer sein, als die Masse der umlaufenden Körper.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Quadrate (zweite Potenzen) der Umlaufzeiten zweier Planeten um das gleiche Zentralgestirn verhalten sich wie die Kuben (dritte Potenzen) der großen Bahnhalbachsen.
  • Für alle Planeten, die um das gleiche Zentralgestirn kreisen, haben die Quotienten aus dem Quadrat der Umlaufzeit und der dritten Potenz der großen Bahnhalbachse den selben Wert \(C\). Dabei muss die Masse des Zentralgestirns deutlich größer sein, als die Masse der umlaufenden Körper.

Zum Artikel Zu den Aufgaben

Entfernungsbestimmung in Planetensystemen

Grundwissen

  • Aus den Umlaufzeiten zweier Planeten und der großen Halbachse eines Planeten, kann die Halbachse des anderer Planeten berechnet werden.
  • Dabei gilt \(a_{2}=a_{1} \cdot \sqrt[3]{\frac{{T_2}^2}{{T_1}^2}}\)

Zum Artikel
Grundwissen

  • Aus den Umlaufzeiten zweier Planeten und der großen Halbachse eines Planeten, kann die Halbachse des anderer Planeten berechnet werden.
  • Dabei gilt \(a_{2}=a_{1} \cdot \sqrt[3]{\frac{{T_2}^2}{{T_1}^2}}\)

Zum Artikel Zu den Aufgaben

Siderische und synodische Umlaufzeit

Grundwissen

  • In der Konjunktion befindet sich ein Planet, wenn er sich von der Erde aus gesehen an der gleichen Stelle des Himmels befindet wie die Sonne.
  • Die siderische Umlaufzeit eines Planeten ist die Zeitspanne, die der Planet für einen vollen Umlauf vor dem Sternenhintergrund benötigt.
  • Die synodische Umlaufzeit eines Planeten ist die Zeitspanne, die der Planet von (oberen) Konjunktionsstellung zur nächsten benötigt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In der Konjunktion befindet sich ein Planet, wenn er sich von der Erde aus gesehen an der gleichen Stelle des Himmels befindet wie die Sonne.
  • Die siderische Umlaufzeit eines Planeten ist die Zeitspanne, die der Planet für einen vollen Umlauf vor dem Sternenhintergrund benötigt.
  • Die synodische Umlaufzeit eines Planeten ist die Zeitspanne, die der Planet von (oberen) Konjunktionsstellung zur nächsten benötigt.

Zum Artikel Zu den Aufgaben

Energie der Sonne

Grundwissen

  • Aufgrund der von ihre ausgehenden Strahlung verliert die Sonne pro Sekunde eine Masse von \(M=4{,}28\cdot 10^{9}\,\rm{kg}\).
  • Im Inneren der Sonne findet Kernfusion statt, nur so lässt sich ihre Lebensdauer erklären.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Aufgrund der von ihre ausgehenden Strahlung verliert die Sonne pro Sekunde eine Masse von \(M=4{,}28\cdot 10^{9}\,\rm{kg}\).
  • Im Inneren der Sonne findet Kernfusion statt, nur so lässt sich ihre Lebensdauer erklären.

Zum Artikel Zu den Aufgaben

Zweites KEPLERsches Gesetz

Grundwissen

  • Ein von der Sonne zum Planeten gezogener Fahrstrahl überstreicht in gleichen Zeiten gleich große Flächen.
  • Die Geschwindigkeit eines Planeten ändert sich auf seiner Bahn um die Sonne: im Perihel ist er am schnellsten, im Aphel am langsamsten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein von der Sonne zum Planeten gezogener Fahrstrahl überstreicht in gleichen Zeiten gleich große Flächen.
  • Die Geschwindigkeit eines Planeten ändert sich auf seiner Bahn um die Sonne: im Perihel ist er am schnellsten, im Aphel am langsamsten.

Zum Artikel Zu den Aufgaben

Himmelskörper

Grundwissen

Sonne, Mond und Sterne - die Astronomie beschäftigt sich mit dem Weltraum, Himmelskörpern und deren Eigenschaften. Neben scheinbar unendlichen Weiten und allerlei spektakulären Phänomen wie schwarzen Löchern hält das All für PhysikerInnen einige Überraschungen bereit.
Hier erhältst du einen Überblick, über die wichtigsten Objekte im Weltall und ihre Besonderheiten.

Zum Artikel Zu den Aufgaben
Grundwissen

Sonne, Mond und Sterne - die Astronomie beschäftigt sich mit dem Weltraum, Himmelskörpern und deren Eigenschaften. Neben scheinbar unendlichen Weiten und allerlei spektakulären Phänomen wie schwarzen Löchern hält das All für PhysikerInnen einige Überraschungen bereit.
Hier erhältst du einen Überblick, über die wichtigsten Objekte im Weltall und ihre Besonderheiten.

Zum Artikel Zu den Aufgaben

Klassische Röntgenaufnahmen

Grundwissen

  • Röntgenstrahlen bzw. Röntgenbilder sind in der Medizin wichtige Diagnosewerkzeuge.
  • Dabei wird ausgenutzt, dass unterschiedliches Gewebe und Knochen die Röntgenstrahlung unterschiedlich stark absorbieren (schwächen).
  • Moderne digitale Röntgengeräte senken die durch eine Röntgenaufnahme verursachte Strahlenbelastung stark.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Röntgenstrahlen bzw. Röntgenbilder sind in der Medizin wichtige Diagnosewerkzeuge.
  • Dabei wird ausgenutzt, dass unterschiedliches Gewebe und Knochen die Röntgenstrahlung unterschiedlich stark absorbieren (schwächen).
  • Moderne digitale Röntgengeräte senken die durch eine Röntgenaufnahme verursachte Strahlenbelastung stark.

Zum Artikel Zu den Aufgaben

Jährliche Sternbewegung

Grundwissen

  • Nahe Fixsterne scheinen im Laufe eines Jahres bei der Beobachtung von der Erde aus vor dem weit entfernten Sternenhintergrund etwas zu wandern.
  • Ursache dafür ist, dass sich die Erde im Laufe eines Jahres einmal um die Sonne bewegt.
  • Mithilfe der beobachteten jährlichen Parallaxe \(p\) kann die Entfernung relativ naher Sterne (mit einfachen Teleskopen vom Erdboden bis ca. \(100 \rm{pc} = 326\,\rm{Lj}\)) berechnet werden. Mit speziellen Raumsonden (z.B. Gaia) erhöht sich die Reichweite erheblich.

Zum Artikel
Grundwissen

  • Nahe Fixsterne scheinen im Laufe eines Jahres bei der Beobachtung von der Erde aus vor dem weit entfernten Sternenhintergrund etwas zu wandern.
  • Ursache dafür ist, dass sich die Erde im Laufe eines Jahres einmal um die Sonne bewegt.
  • Mithilfe der beobachteten jährlichen Parallaxe \(p\) kann die Entfernung relativ naher Sterne (mit einfachen Teleskopen vom Erdboden bis ca. \(100 \rm{pc} = 326\,\rm{Lj}\)) berechnet werden. Mit speziellen Raumsonden (z.B. Gaia) erhöht sich die Reichweite erheblich.

Zum Artikel Zu den Aufgaben

Entwicklung der Sonne

Grundwissen

  • Aktuell befindet sich die Sonne im Hauptreihenstadium und ist ein Gelber Zwerg.
  • Durch die Ständige Kernfusion im Inneren wandert die Sonne entlang der Hauptreihe im Hertzsprung-Russel-Diagramm.
  • In etwa 6 Milliarden Jahren wird die Sonne dann zu einem Roten Riesen bis sie schließlich als Weißer Zwerg endet.

Zum Artikel
Grundwissen

  • Aktuell befindet sich die Sonne im Hauptreihenstadium und ist ein Gelber Zwerg.
  • Durch die Ständige Kernfusion im Inneren wandert die Sonne entlang der Hauptreihe im Hertzsprung-Russel-Diagramm.
  • In etwa 6 Milliarden Jahren wird die Sonne dann zu einem Roten Riesen bis sie schließlich als Weißer Zwerg endet.

Zum Artikel Zu den Aufgaben

Ausdehnung des Kosmos

Grundwissen

  • Das Universum als Ganzes dehnt sich gegenwärtig aus.
  • Dabei besteht ein Zusammenhang zwischen der Entfernung der Galaxien voneinander und ihrer "Fluchtgeschwindigkeit" voneinander.
  • Bei der Ausdehnung gibt es keinen ausgezeichneten Punkt, keinen Mittelpunkt.

Zum Artikel
Grundwissen

  • Das Universum als Ganzes dehnt sich gegenwärtig aus.
  • Dabei besteht ein Zusammenhang zwischen der Entfernung der Galaxien voneinander und ihrer "Fluchtgeschwindigkeit" voneinander.
  • Bei der Ausdehnung gibt es keinen ausgezeichneten Punkt, keinen Mittelpunkt.

Zum Artikel Zu den Aufgaben

Aktivität eines Präparats

Grundwissen

  • Die Aktivität \(A\) einer radioaktiven Quelle gibt die Anzahl der Zerfälle \(\Delta N\) in der Quelle pro Zeitintervall \(\Delta t\) an.
  • Die Einheit der Aktivität ist Becquerel: \(\left[A\right]=1\,\rm{Bq}\)
  • Zur besseren Vergleichbarkeit wird häufig die spezifische Aktivität einer Probe angegeben, die das Verhältnis von Aktivität zur Masse der Probe beschreibt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Aktivität \(A\) einer radioaktiven Quelle gibt die Anzahl der Zerfälle \(\Delta N\) in der Quelle pro Zeitintervall \(\Delta t\) an.
  • Die Einheit der Aktivität ist Becquerel: \(\left[A\right]=1\,\rm{Bq}\)
  • Zur besseren Vergleichbarkeit wird häufig die spezifische Aktivität einer Probe angegeben, die das Verhältnis von Aktivität zur Masse der Probe beschreibt.

Zum Artikel Zu den Aufgaben

Überblick über die Strahlungsarten

Grundwissen

  • Die drei Strahlungsarten unterscheiden sich in vielfältigen Eigenschaften
  • Aber jede der Strahlungsarten kann für den Menschen gefährlich sein

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die drei Strahlungsarten unterscheiden sich in vielfältigen Eigenschaften
  • Aber jede der Strahlungsarten kann für den Menschen gefährlich sein

Zum Artikel Zu den Aufgaben

Halbwertszeit

Grundwissen

  • Die Halbwertszeit \(T_{1/2}\) gibt an, nach welcher Zeitspanne sich die Anzahl der radioaktiven Ausgangskerne halbiert hat.
  • Nach einer Halbwertszeit hat sich auch entsprechend die Aktivität \(A\) einer Probe halbiert.
  • Die Halbwertszeiten variieren sehr stark zwischen verschiedenen Isotopen.
  • Es gilt: \(N(t) = {\left( {\frac{1}{2}} \right)^{\frac{t}{{{T_{1/2}}}}}} \cdot N(0)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Halbwertszeit \(T_{1/2}\) gibt an, nach welcher Zeitspanne sich die Anzahl der radioaktiven Ausgangskerne halbiert hat.
  • Nach einer Halbwertszeit hat sich auch entsprechend die Aktivität \(A\) einer Probe halbiert.
  • Die Halbwertszeiten variieren sehr stark zwischen verschiedenen Isotopen.
  • Es gilt: \(N(t) = {\left( {\frac{1}{2}} \right)^{\frac{t}{{{T_{1/2}}}}}} \cdot N(0)\)

Zum Artikel Zu den Aufgaben

Strahlenschutz

Grundwissen

Die 5 "A"s des Strahlenschutzes:

  • Abstand erhöhen!
  • Aufenthaltsdauer verkürzen!
  • Aktivität vermindern!
  • Abschirmung verstärken!
  • Aufnahme in den Körper vermeiden!

Zum Artikel Zu den Aufgaben
Grundwissen

Die 5 "A"s des Strahlenschutzes:

  • Abstand erhöhen!
  • Aufenthaltsdauer verkürzen!
  • Aktivität vermindern!
  • Abschirmung verstärken!
  • Aufnahme in den Körper vermeiden!

Zum Artikel Zu den Aufgaben

Energiebilanz beim Alpha-Zerfall

Grundwissen

  • Beim Alpha-Zerfall emittiert der Mutterkern \(\rm{X}\) ein \(\alpha\)-Teilchen (\(\rm{He}\)-Kern). Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(2\), die Massenzahl um \(4\) kleiner als die des Mutterkerns.
  • Die Reaktionsgleichung lautet \(_{Z}^{A}{\rm{X}}\to\;_{Z-2}^{A-4}{\rm{Y}} +\;_{2}^{4}{\rm{He }}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q = \left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-m_{\rm{A}}\left(_{2}^{4}{\rm{He }} \right) \right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Alpha-Zerfall emittiert der Mutterkern \(\rm{X}\) ein \(\alpha\)-Teilchen (\(\rm{He}\)-Kern). Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(2\), die Massenzahl um \(4\) kleiner als die des Mutterkerns.
  • Die Reaktionsgleichung lautet \(_{Z}^{A}{\rm{X}}\to\;_{Z-2}^{A-4}{\rm{Y}} +\;_{2}^{4}{\rm{He }}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q = \left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-m_{\rm{A}}\left(_{2}^{4}{\rm{He }} \right) \right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Energiebilanz beim Beta-Minus-Zerfall

Grundwissen

  • Beim Beta-Minus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Neutron in ein Proton um. Gleichzeitig wird ein \(\beta^-\)-Teilchen (Elektron) und ein Anti-Elektron-Neutrino \(\bar \nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) größer als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z+1}^A{\rm{Y}} +\;_{-1}^0{\rm{e^-}}+\;_0^0{\bar \nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Beta-Minus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Neutron in ein Proton um. Gleichzeitig wird ein \(\beta^-\)-Teilchen (Elektron) und ein Anti-Elektron-Neutrino \(\bar \nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) größer als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z+1}^A{\rm{Y}} +\;_{-1}^0{\rm{e^-}}+\;_0^0{\bar \nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Wahrscheinlichkeitsverteilungen beim H-Atom

Grundwissen

  • Die Wahrscheinlichkeitsverteilung kann mit verschiedenen Darstellungsformen visualisiert werden.

Zum Artikel
Grundwissen

  • Die Wahrscheinlichkeitsverteilung kann mit verschiedenen Darstellungsformen visualisiert werden.

Zum Artikel Zu den Aufgaben

Aufbau der Sonne

Grundwissen

  • Der Kern der Sonne stellt einen Fusionsreaktor dar, der letztendlich für die abgestrahlte Energie verantwortlich ist.
  •  Im Inneren der Sonne wird die Energie zunächst durch Strahlung (Strahlenzone), dann durch Konvektion (Konvektionszone) transportiert.
  • In der Photosphäre entsteht der kontinuierliche Teil der Sonnenstrahlung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Kern der Sonne stellt einen Fusionsreaktor dar, der letztendlich für die abgestrahlte Energie verantwortlich ist.
  •  Im Inneren der Sonne wird die Energie zunächst durch Strahlung (Strahlenzone), dann durch Konvektion (Konvektionszone) transportiert.
  • In der Photosphäre entsteht der kontinuierliche Teil der Sonnenstrahlung.

Zum Artikel Zu den Aufgaben

Warum ist der Laser wichtig für uns?

Grundwissen

  • Laser kommen in verschiedensten Lebensbereichen zum Einsatz: von der Medizin, über die Datenübertragung im Internet bis hin zur Messwertgewinnung für die Wettervorhersage.

Zum Artikel
Grundwissen

  • Laser kommen in verschiedensten Lebensbereichen zum Einsatz: von der Medizin, über die Datenübertragung im Internet bis hin zur Messwertgewinnung für die Wettervorhersage.

Zum Artikel Zu den Aufgaben

Bestandteile eines Lasers

Grundwissen

  • Laser habe drei zentrale Bestandteile: das Lasermedium, die Pumpe und den Resonator.
  • Die Pumpe bringt Energie ins System und sorgt für eine Besetzungsinversion im Lasermedium.
  • Der Resonator, eine Anordnung aus zwei parallelen Spiegeln, verstärkt den Laserstrahl und richtet ihn aus.

Zum Artikel
Grundwissen

  • Laser habe drei zentrale Bestandteile: das Lasermedium, die Pumpe und den Resonator.
  • Die Pumpe bringt Energie ins System und sorgt für eine Besetzungsinversion im Lasermedium.
  • Der Resonator, eine Anordnung aus zwei parallelen Spiegeln, verstärkt den Laserstrahl und richtet ihn aus.

Zum Artikel Zu den Aufgaben

Stimulierte (induzierte) Emission

Grundwissen

  • Laser nutzen den Effekt der stimulierte (induzierten) Emission.
  • Dabei stimuliert ein Photon ein passend angeregtes Atom dazu, ein Photon zu emittieren.
  • Dieses Photon besitzt die gleiche Energie, die gleiche Schwingungsphase, die gleiche Bewegungsrichtung und die gleiche Polarisation wie das auslösende Photon.

Zum Artikel
Grundwissen

  • Laser nutzen den Effekt der stimulierte (induzierten) Emission.
  • Dabei stimuliert ein Photon ein passend angeregtes Atom dazu, ein Photon zu emittieren.
  • Dieses Photon besitzt die gleiche Energie, die gleiche Schwingungsphase, die gleiche Bewegungsrichtung und die gleiche Polarisation wie das auslösende Photon.

Zum Artikel Zu den Aufgaben

Eigenschaften der Laserstrahlung

Grundwissen

  • Laserlicht ist monofrequent und linear polarisiert.
  • Laserlicht besitzt nur eine sehr geringe Divergenz, ein Laserbündel weitet sich also nur sehr wenig auf.
  • Mit Laserlicht können hohe Leistungsdichten im Fokus erreicht werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Laserlicht ist monofrequent und linear polarisiert.
  • Laserlicht besitzt nur eine sehr geringe Divergenz, ein Laserbündel weitet sich also nur sehr wenig auf.
  • Mit Laserlicht können hohe Leistungsdichten im Fokus erreicht werden.

Zum Artikel Zu den Aufgaben

Lasermedien

Grundwissen

  • In Lasermedien muss eine Besetzungsinversion erzeugt werden, dies ist bei Medien mit nur zwei Energiezuständen nicht möglich.
  • Lasermedien besitzen daher mehr als zwei Energiezustände.
  • Dabei ist ein angeregter Energiezustand, der nicht der höchste ist, metastabil, also langlebig. Eine Besetzungsinversion wird möglich.

Zum Artikel
Grundwissen

  • In Lasermedien muss eine Besetzungsinversion erzeugt werden, dies ist bei Medien mit nur zwei Energiezuständen nicht möglich.
  • Lasermedien besitzen daher mehr als zwei Energiezustände.
  • Dabei ist ein angeregter Energiezustand, der nicht der höchste ist, metastabil, also langlebig. Eine Besetzungsinversion wird möglich.

Zum Artikel Zu den Aufgaben

Was ist Bionik?

Grundwissen
Grundwissen

Der Lotuseffekt - selbstreinigende Oberfläche

Grundwissen
Grundwissen

Auftrieb

Grundwissen
Grundwissen

Flugfrüchte

Grundwissen
Grundwissen

Leichtbauweise

Grundwissen
Grundwissen

Kernspaltung

Grundwissen

  • Schwere Atomkerne (große Massenzahl \(A\)) können z. B. durch den Beschuss mit langsamen Neutronen in mehrere kleinere Atomkerne gespalten werden.
  • Bei der Spaltreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Spaltung ist kleiner als die Gesamtmasse vor der Spaltung.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernspaltung frei wird.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Schwere Atomkerne (große Massenzahl \(A\)) können z. B. durch den Beschuss mit langsamen Neutronen in mehrere kleinere Atomkerne gespalten werden.
  • Bei der Spaltreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Spaltung ist kleiner als die Gesamtmasse vor der Spaltung.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernspaltung frei wird.

Zum Artikel Zu den Aufgaben

Kernfusion

Grundwissen

  • Zwei leichte Atomkerne können zu einem größeren Kern fusioniert werden, insbesondere Deuterium und Tritium zu Helium.
  • Bei der Fusionsreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Fusion sind kleiner als die Gesamtmasse vor der Fusion.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernfusion frei wird.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zwei leichte Atomkerne können zu einem größeren Kern fusioniert werden, insbesondere Deuterium und Tritium zu Helium.
  • Bei der Fusionsreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Fusion sind kleiner als die Gesamtmasse vor der Fusion.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernfusion frei wird.

Zum Artikel Zu den Aufgaben