Direkt zum Inhalt
Suchergebnisse 31 - 58 von 58

Relativistische Energie

Grundwissen

  • Die relativistische Gesamtenergie eines Körpers ist \(E(v)=m_{\rm{rel}}\cdot c^2=\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}}\cdot c^2\)
  • Die Ruheenergie eines Körpers ist \(E_0=m_0\cdot c^2\)
  • Die kinetische Energie ist die Differenz der Gesamtenergie \(E(v)\) und der Ruheenergie \(E_0\), also \(E_{\rm{kin}}=\left( {\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}} - {m_0}} \right) \cdot {c^2}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die relativistische Gesamtenergie eines Körpers ist \(E(v)=m_{\rm{rel}}\cdot c^2=\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}}\cdot c^2\)
  • Die Ruheenergie eines Körpers ist \(E_0=m_0\cdot c^2\)
  • Die kinetische Energie ist die Differenz der Gesamtenergie \(E(v)\) und der Ruheenergie \(E_0\), also \(E_{\rm{kin}}=\left( {\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}} - {m_0}} \right) \cdot {c^2}\)

Zum Artikel Zu den Aufgaben

Wahrscheinlichkeitsverteilungen beim H-Atom

Grundwissen

  • Die Wahrscheinlichkeitsverteilung kann mit verschiedenen Darstellungsformen visualisiert werden.

Zum Artikel
Grundwissen

  • Die Wahrscheinlichkeitsverteilung kann mit verschiedenen Darstellungsformen visualisiert werden.

Zum Artikel Zu den Aufgaben

Längenkontraktion

Grundwissen

  • Für bewegte Beobachter sind Strecken verkürzt.
  • Für die Längenkontraktion gilt: \(\Delta x' = \Delta x \cdot \sqrt{1 - \left(\frac{v}{c}\right)^2}\)
  • Die Längenkontraktion findet nur in Bewegungsrichtung statt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für bewegte Beobachter sind Strecken verkürzt.
  • Für die Längenkontraktion gilt: \(\Delta x' = \Delta x \cdot \sqrt{1 - \left(\frac{v}{c}\right)^2}\)
  • Die Längenkontraktion findet nur in Bewegungsrichtung statt.

Zum Artikel Zu den Aufgaben

Kraft auf stromführende Leiter im Magnetfeld

Grundwissen

  • Auf stromdurchflossene Leiter im Magnetfeld wirkt im Allgemeinen eine Kraft.
  • Die Kraftrichtung kannst du mit der Drei-Finger-Regel der rechten Hand bestimmen.
  • Wenn Stromrichtung und Magnetfeldrichtung parallel bzw. antiparallel verlaufen, wirkt keine Kraft.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auf stromdurchflossene Leiter im Magnetfeld wirkt im Allgemeinen eine Kraft.
  • Die Kraftrichtung kannst du mit der Drei-Finger-Regel der rechten Hand bestimmen.
  • Wenn Stromrichtung und Magnetfeldrichtung parallel bzw. antiparallel verlaufen, wirkt keine Kraft.

Zum Artikel Zu den Aufgaben

Wechselstromwiderstände

Grundwissen

  • Der Wechselstromwiderstand eines Elementes ist der Quotient aus Effektivspannung und Effektivstromstärke: \(X=\frac{U_{\rm{eff}}}{I_{\rm{eff}}}\)
  • Man unterscheidet zwischen Wechselstromwiderständen von OHMschen Leitern \(X_R\), an kapazitiven Bauelementen (Kondensatoren) \(X_C\) und an induktiven Bauelementen (Spulen) \(X_L\).
  • Zusätzlich verursachen Kondensatoren und Spulen Phasenverschiebungen der über dem Bauelement abfallenden Spannung gegenüber der Stromstärke1.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Wechselstromwiderstand eines Elementes ist der Quotient aus Effektivspannung und Effektivstromstärke: \(X=\frac{U_{\rm{eff}}}{I_{\rm{eff}}}\)
  • Man unterscheidet zwischen Wechselstromwiderständen von OHMschen Leitern \(X_R\), an kapazitiven Bauelementen (Kondensatoren) \(X_C\) und an induktiven Bauelementen (Spulen) \(X_L\).
  • Zusätzlich verursachen Kondensatoren und Spulen Phasenverschiebungen der über dem Bauelement abfallenden Spannung gegenüber der Stromstärke1.

Zum Artikel Zu den Aufgaben

Zeigerdiagramme in der Wechselstromtechnik

Grundwissen

  • In der Wechselstromtechnik werden häufig Zeigerdiagramme zur Darstellung von Stromstärke und Spannung genutzt.
  • Dabei dreht sich ein Zeiger, dessen Länge der Amplitude (z.B. \(\hat I\)) entspricht, mit der  Winkelgeschwindigkeit \(\omega\) gegen den Uhrzeigersinn.
  • Der Momentanwert der jeweiligen Größe kann dann im Zeigerdiagramm an der vertikalen Achse abgelesen werden.

Zum Artikel
Grundwissen

  • In der Wechselstromtechnik werden häufig Zeigerdiagramme zur Darstellung von Stromstärke und Spannung genutzt.
  • Dabei dreht sich ein Zeiger, dessen Länge der Amplitude (z.B. \(\hat I\)) entspricht, mit der  Winkelgeschwindigkeit \(\omega\) gegen den Uhrzeigersinn.
  • Der Momentanwert der jeweiligen Größe kann dann im Zeigerdiagramm an der vertikalen Achse abgelesen werden.

Zum Artikel Zu den Aufgaben

Gleichzeitigkeit

Grundwissen

  • In einem Inertialsystem finden zwei Ereignisse an zwei verschiedenen Orten gleichzeitig statt, wenn sie von einem Lichtblitz ausgelöst werden können, der genau aus der Mitte zwischen ihren Orten ausgeht.
  • Finden zwei Ereignisse in einem Inertialsystem gleichzeitig statt, so finden sie in einem zweiten, gegenüber dem ersten Inertialsystem bewegten Inertialsystem zu verschiedenen Zeiten statt.
  • Auch Gleichzeitigkeit ist relativ.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In einem Inertialsystem finden zwei Ereignisse an zwei verschiedenen Orten gleichzeitig statt, wenn sie von einem Lichtblitz ausgelöst werden können, der genau aus der Mitte zwischen ihren Orten ausgeht.
  • Finden zwei Ereignisse in einem Inertialsystem gleichzeitig statt, so finden sie in einem zweiten, gegenüber dem ersten Inertialsystem bewegten Inertialsystem zu verschiedenen Zeiten statt.
  • Auch Gleichzeitigkeit ist relativ.

Zum Artikel Zu den Aufgaben

Relativistische Masse und Impuls

Grundwissen

  • Auch die Masse eines Teilchens und sein Impuls unterliegen relativistischen Effekten.
  • Die relativistische Masse  nimmt mit der Geschwindigkeit \(v\) eines Teilchens stark zu, es gilt: \(m_{\rm{rel}}=\frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}\)
  • Für den relativistischen Impuls gilt \(p = m_{\rm{rel}}\cdot v    \Rightarrow     p = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \cdot v\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auch die Masse eines Teilchens und sein Impuls unterliegen relativistischen Effekten.
  • Die relativistische Masse  nimmt mit der Geschwindigkeit \(v\) eines Teilchens stark zu, es gilt: \(m_{\rm{rel}}=\frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}\)
  • Für den relativistischen Impuls gilt \(p = m_{\rm{rel}}\cdot v    \Rightarrow     p = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \cdot v\)

Zum Artikel Zu den Aufgaben

Bestandteile eines Lasers

Grundwissen

  • Laser habe drei zentrale Bestandteile: das Lasermedium, die Pumpe und den Resonator.
  • Die Pumpe bringt Energie ins System und sorgt für eine Besetzungsinversion im Lasermedium.
  • Der Resonator, eine Anordnung aus zwei parallelen Spiegeln, verstärkt den Laserstrahl und richtet ihn aus.

Zum Artikel
Grundwissen

  • Laser habe drei zentrale Bestandteile: das Lasermedium, die Pumpe und den Resonator.
  • Die Pumpe bringt Energie ins System und sorgt für eine Besetzungsinversion im Lasermedium.
  • Der Resonator, eine Anordnung aus zwei parallelen Spiegeln, verstärkt den Laserstrahl und richtet ihn aus.

Zum Artikel Zu den Aufgaben

Eigenschaften der Laserstrahlung

Grundwissen

  • Laserlicht ist monofrequent und linear polarisiert.
  • Laserlicht besitzt nur eine sehr geringe Divergenz, ein Laserbündel weitet sich also nur sehr wenig auf.
  • Mit Laserlicht können hohe Leistungsdichten im Fokus erreicht werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Laserlicht ist monofrequent und linear polarisiert.
  • Laserlicht besitzt nur eine sehr geringe Divergenz, ein Laserbündel weitet sich also nur sehr wenig auf.
  • Mit Laserlicht können hohe Leistungsdichten im Fokus erreicht werden.

Zum Artikel Zu den Aufgaben

Lasermedien

Grundwissen

  • In Lasermedien muss eine Besetzungsinversion erzeugt werden, dies ist bei Medien mit nur zwei Energiezuständen nicht möglich.
  • Lasermedien besitzen daher mehr als zwei Energiezustände.
  • Dabei ist ein angeregter Energiezustand, der nicht der höchste ist, metastabil, also langlebig. Eine Besetzungsinversion wird möglich.

Zum Artikel
Grundwissen

  • In Lasermedien muss eine Besetzungsinversion erzeugt werden, dies ist bei Medien mit nur zwei Energiezuständen nicht möglich.
  • Lasermedien besitzen daher mehr als zwei Energiezustände.
  • Dabei ist ein angeregter Energiezustand, der nicht der höchste ist, metastabil, also langlebig. Eine Besetzungsinversion wird möglich.

Zum Artikel Zu den Aufgaben

Magnetfeld einer Zylinderspule

Grundwissen

  • Das Magnetfeld im Innenraum einer langgestreckten Spule ist annähernd homogen.
  • Für die magnetische Feldstärke (magnetische Flussdichte) in einer luftgefüllten Spule gilt \(B = {\mu _0} \cdot \frac{{I \cdot N}}{l}\).
  • Die magnetische Feldstärke kann mithilfe ferromagnetischer Stoffe im Innenraum um den materialabhängigen Faktor \(\mu_r\) verstärkt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Magnetfeld im Innenraum einer langgestreckten Spule ist annähernd homogen.
  • Für die magnetische Feldstärke (magnetische Flussdichte) in einer luftgefüllten Spule gilt \(B = {\mu _0} \cdot \frac{{I \cdot N}}{l}\).
  • Die magnetische Feldstärke kann mithilfe ferromagnetischer Stoffe im Innenraum um den materialabhängigen Faktor \(\mu_r\) verstärkt werden.

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung von Induktionsvorgängen

Grundwissen

  • Bei unseren Versuchen und Aufgaben zur Induktion ist das magnetische Feld stets homogen und kann durch einen einzigen Feldvektor \(\vec B\) beschrieben werden.
  • Bei unseren Versuchen und Aufgaben zur Induktion ist die Leiterschleife stets eben und kann durch einen einzigen Flächenvektor \(\vec A\) beschrieben werden. \(\vec A\) beschreibt dabei die (Teil-)Fläche der Leiterschleife, die sich im magnetischen Feld befindet.
  • Bei Induktionsvorgängen ist \(\varphi\) die Weite des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\).

Zum Artikel
Grundwissen

  • Bei unseren Versuchen und Aufgaben zur Induktion ist das magnetische Feld stets homogen und kann durch einen einzigen Feldvektor \(\vec B\) beschrieben werden.
  • Bei unseren Versuchen und Aufgaben zur Induktion ist die Leiterschleife stets eben und kann durch einen einzigen Flächenvektor \(\vec A\) beschrieben werden. \(\vec A\) beschreibt dabei die (Teil-)Fläche der Leiterschleife, die sich im magnetischen Feld befindet.
  • Bei Induktionsvorgängen ist \(\varphi\) die Weite des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\).

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis gedämpft

Grundwissen

  • Der Widerstand der Bauteile in einem Schwingkreis führt zur Dämpfung der Schwingung.
  • Die Differentialgleichung der gedämpften elektromagnetischen Schwingung ist \(L \cdot \ddot Q + \frac{Q}{C} + R \cdot \dot Q = 0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Widerstand der Bauteile in einem Schwingkreis führt zur Dämpfung der Schwingung.
  • Die Differentialgleichung der gedämpften elektromagnetischen Schwingung ist \(L \cdot \ddot Q + \frac{Q}{C} + R \cdot \dot Q = 0\).

Zum Artikel Zu den Aufgaben

Kraft zwischen elektrischen Ladungen

Grundwissen

  • Gleichnamige Ladungen stoßen sich ab, ungleichnamige Ladungen ziehen sich an.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft wächst mit der "Größe" der Ladungen.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft sinkt mit der Vergrößerung des Abstands zwischen den Ladungen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Gleichnamige Ladungen stoßen sich ab, ungleichnamige Ladungen ziehen sich an.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft wächst mit der "Größe" der Ladungen.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft sinkt mit der Vergrößerung des Abstands zwischen den Ladungen.

Zum Artikel Zu den Aufgaben

Energieaufnahme von Atomen durch (Resonanz-)Absorption von Photonen

Grundwissen

  • Atome können beim Aufeinandertreffen mit Photonen angeregt werden.
  • Die Energie des Photons muss aber exakt gleich der Energiedifferenz der verschiedenen Energiezustände sein: \({E_{{\rm{Ph}}}} = {E_m} - {E_n}\). Deshalb der Begriff "Resonanzabsorption".
  • Nach der Absorption ist das Photon komplett vernichtet.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Atome können beim Aufeinandertreffen mit Photonen angeregt werden.
  • Die Energie des Photons muss aber exakt gleich der Energiedifferenz der verschiedenen Energiezustände sein: \({E_{{\rm{Ph}}}} = {E_m} - {E_n}\). Deshalb der Begriff "Resonanzabsorption".
  • Nach der Absorption ist das Photon komplett vernichtet.

Zum Artikel Zu den Aufgaben

Energieaufnahme von Atomen durch Stoßanregung

Grundwissen

  • Atome können durch Stöße mit anderen Atomen oder Elektronen angeregt werden (Stoßanregung).
  • Je nach Energie des Teilchens, das mit einem Atom stößt, kann der Stoß elastisch, vollkommen unelastisch oder teilweise unelastisch sein.
  • Ist der Energieübertrag durch den Stoß größer als die Ionisationsenergie des Atoms, so wird das Atom ionisiert (Stoßionisation).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Atome können durch Stöße mit anderen Atomen oder Elektronen angeregt werden (Stoßanregung).
  • Je nach Energie des Teilchens, das mit einem Atom stößt, kann der Stoß elastisch, vollkommen unelastisch oder teilweise unelastisch sein.
  • Ist der Energieübertrag durch den Stoß größer als die Ionisationsenergie des Atoms, so wird das Atom ionisiert (Stoßionisation).

Zum Artikel Zu den Aufgaben

Energieabgabe von Atomen durch Emission von Photonen

Grundwissen

  • Angeregte Atome geben Energie durch die Emission von Photonen ab.
  • Diese Photon werden erst bei der Emission erzeugt, d.h. sie waren vorher nicht im Atom vorhanden.
  • Die Energie der emittierten Photonen ist immer gleich der Differenz der Energien zweier Energieniveaus des Atoms.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Angeregte Atome geben Energie durch die Emission von Photonen ab.
  • Diese Photon werden erst bei der Emission erzeugt, d.h. sie waren vorher nicht im Atom vorhanden.
  • Die Energie der emittierten Photonen ist immer gleich der Differenz der Energien zweier Energieniveaus des Atoms.

Zum Artikel Zu den Aufgaben

Energiezustände von Wasserstoff und verwandten Atomen

Grundwissen

  • Die Energiezustände des Wasserstoffatoms sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{1}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Damit können auch die Wellenlängen \(\lambda\) der bei Wasserstoffübergängen möglichen Photonen berechnet werden.
  • Die Energiezustände von Einelektronensystemen von Atomen mit der Kernladungszahl \(Z\) sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{Z^2}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Die Energiezustände von RYDBERG-Zustände aller Atomarten entsprechen den einfachen Verhältnissen beim Wasserstoffatom.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Energiezustände des Wasserstoffatoms sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{1}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Damit können auch die Wellenlängen \(\lambda\) der bei Wasserstoffübergängen möglichen Photonen berechnet werden.
  • Die Energiezustände von Einelektronensystemen von Atomen mit der Kernladungszahl \(Z\) sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{Z^2}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Die Energiezustände von RYDBERG-Zustände aller Atomarten entsprechen den einfachen Verhältnissen beim Wasserstoffatom.

Zum Artikel Zu den Aufgaben

Erzeugung von RÖNTGEN-Strahlung

Grundwissen

  • In RÖNTGEN-Röhren werden Elektronen stark beschleunigt und treffen dann auf eine Anode aus Metall.
  • Die Beschleunigungsspannungen betragen meist zwischen \(1\,\rm{kV}\) und \(100\,\rm{kV}\).
  • Beim Abbremsen der Elektronen im Anodenmaterial entsteht RÖNTGEN-Strahlung (Bremsstrahlung und Charakteristische Strahlung) und Wärme.
  • Die Wellenlänge von RÖNTGEN-Strahlung liegt etwa zwischen \(1\,\rm{nm}\) und \(1\,\rm{pm}\).

Zum Artikel
Grundwissen

  • In RÖNTGEN-Röhren werden Elektronen stark beschleunigt und treffen dann auf eine Anode aus Metall.
  • Die Beschleunigungsspannungen betragen meist zwischen \(1\,\rm{kV}\) und \(100\,\rm{kV}\).
  • Beim Abbremsen der Elektronen im Anodenmaterial entsteht RÖNTGEN-Strahlung (Bremsstrahlung und Charakteristische Strahlung) und Wärme.
  • Die Wellenlänge von RÖNTGEN-Strahlung liegt etwa zwischen \(1\,\rm{nm}\) und \(1\,\rm{pm}\).

Zum Artikel Zu den Aufgaben

Stromkreiselemente

Grundwissen

  • Damit eine Lampe leuchtet, muss immer ein geschlossener Stromkreis vorliegen.
  • Kabel dienen als Verlängerungen und ermöglichen einen einfachen Aufbau.
  • Mit Schaltern kann der Stromkreis geöffnet und geschlossen werden.
  • Sicherungen schützen die Bauteile im Stromkreis vor zu großen Strömen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Damit eine Lampe leuchtet, muss immer ein geschlossener Stromkreis vorliegen.
  • Kabel dienen als Verlängerungen und ermöglichen einen einfachen Aufbau.
  • Mit Schaltern kann der Stromkreis geöffnet und geschlossen werden.
  • Sicherungen schützen die Bauteile im Stromkreis vor zu großen Strömen.

Zum Artikel Zu den Aufgaben

Helium-Neon-Laser

Grundwissen

  • Neon-Atome sind das laseraktive Medium
  • Am Prozess sind vier Energieniveaus beteiligt - es ist ein "Vier-Niveau-System"
  • Helium-Neon-Laser emittiert rotes Licht der Wellenlänge \(\lambda=633\,\rm{nm}\)

Zum Artikel
Grundwissen

  • Neon-Atome sind das laseraktive Medium
  • Am Prozess sind vier Energieniveaus beteiligt - es ist ein "Vier-Niveau-System"
  • Helium-Neon-Laser emittiert rotes Licht der Wellenlänge \(\lambda=633\,\rm{nm}\)

Zum Artikel Zu den Aufgaben

Energiezustände im BOHRschen Atommodell

Grundwissen

  • Durch die Quantenbedingung von BOHR kann die Energie eines Atoms nur bestimmte Werte annehmen.
  • Die Energie, um Wasserstoff aus dem Grundzustand heraus zu ionisieren beträgt \(13{,}6\,\rm{eV}\) (Ionisierungsenergie).
  • Die Gesamtenergie eines Elektrons im Wasserstoffatom gilt \({E_{{\rm{ges}}{\rm{,n}}}} = - R_{\infty} \cdot h \cdot c \cdot \frac{1}{{{n^2}}}\), wobei \(R_{\infty}\) die Rydberg-Konstante ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Durch die Quantenbedingung von BOHR kann die Energie eines Atoms nur bestimmte Werte annehmen.
  • Die Energie, um Wasserstoff aus dem Grundzustand heraus zu ionisieren beträgt \(13{,}6\,\rm{eV}\) (Ionisierungsenergie).
  • Die Gesamtenergie eines Elektrons im Wasserstoffatom gilt \({E_{{\rm{ges}}{\rm{,n}}}} = - R_{\infty} \cdot h \cdot c \cdot \frac{1}{{{n^2}}}\), wobei \(R_{\infty}\) die Rydberg-Konstante ist.

Zum Artikel Zu den Aufgaben

Geschwindigkeitsaddition

Grundwissen

  • Ist \(u\) die Geschwindigkeit eines Körpers im System S und \(v\) die Geschwindigkeit des Systems S' in Bezug auf S und \(u'\) die Geschwindigkeit des Körpers im System S', dann gilt der Zusammenhang \(u = \frac{{u' + v}}{{1 + \frac{{u' \cdot v}}{{{c^2}}}}}\).

 

 

 

Zum Artikel
Grundwissen

  • Ist \(u\) die Geschwindigkeit eines Körpers im System S und \(v\) die Geschwindigkeit des Systems S' in Bezug auf S und \(u'\) die Geschwindigkeit des Körpers im System S', dann gilt der Zusammenhang \(u = \frac{{u' + v}}{{1 + \frac{{u' \cdot v}}{{{c^2}}}}}\).

 

 

 

Zum Artikel Zu den Aufgaben

Parallelschaltung von Widerständen

Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier parallel geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(\frac{1}{R_{12}}=\frac{1}{R_1} +\frac{1}{R_2}\)
  •  Der Gesamtwiderstands einer Parallelschaltung ist stets kleiner als der kleinste Einzelwiderstand eines Astes.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier parallel geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(\frac{1}{R_{12}}=\frac{1}{R_1} +\frac{1}{R_2}\)
  •  Der Gesamtwiderstands einer Parallelschaltung ist stets kleiner als der kleinste Einzelwiderstand eines Astes.

Zum Artikel Zu den Aufgaben

Quantenmechanische Systematisierung des Periodensystems

Grundwissen

  • Die Zustände der gebundenen Elektronen eines Atoms werden mit den Quantenzahlen beschrieben.
  • Es gibt vier unterschiedliche Quantenzahlen: Hauptquantenzahl \(n\), Nebenquantenzahl \(l\), magnetische Quantenzahl \(m\) und Spin-Quantenzahl \(s\).
  • Das PAULI-Prinzip besagt, dass in einem Atom niemals zwei Elektronen in allen vier Quantenzahlen übereinstimmen können.

Zum Artikel
Grundwissen

  • Die Zustände der gebundenen Elektronen eines Atoms werden mit den Quantenzahlen beschrieben.
  • Es gibt vier unterschiedliche Quantenzahlen: Hauptquantenzahl \(n\), Nebenquantenzahl \(l\), magnetische Quantenzahl \(m\) und Spin-Quantenzahl \(s\).
  • Das PAULI-Prinzip besagt, dass in einem Atom niemals zwei Elektronen in allen vier Quantenzahlen übereinstimmen können.

Zum Artikel Zu den Aufgaben

Leiter und Nichtleiter

Grundwissen

  • Materialien können grob in zwei Kategorien eingeteilt werden: Leiter (z.B. Metalle) und Nichtleiter (z.B. Kunststoffe).
  • Ob ein Material Strom gut oder schlecht leitet kannst du mit einer Testschaltung prüfen.
  • Je mehr Salz im Wasser gelöst ist, desto besser leitet Wasser Strom.
  • Die meisten Gase leiten Strom nicht.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Materialien können grob in zwei Kategorien eingeteilt werden: Leiter (z.B. Metalle) und Nichtleiter (z.B. Kunststoffe).
  • Ob ein Material Strom gut oder schlecht leitet kannst du mit einer Testschaltung prüfen.
  • Je mehr Salz im Wasser gelöst ist, desto besser leitet Wasser Strom.
  • Die meisten Gase leiten Strom nicht.

Zum Artikel Zu den Aufgaben

Elektrische Ladung

Grundwissen

  • Die Einheit der elektrischen Ladung, Symbol \(Q\), ist das Coulomb, Symbol \(\rm{C}\).
  • Ein Elektron besitzt die negative Elementarladung: \(q_{\rm{Elektron}}=-e = -1{,}6 \cdot 10^{-19}\,\rm{C}\).

Zum Artikel
Grundwissen

  • Die Einheit der elektrischen Ladung, Symbol \(Q\), ist das Coulomb, Symbol \(\rm{C}\).
  • Ein Elektron besitzt die negative Elementarladung: \(q_{\rm{Elektron}}=-e = -1{,}6 \cdot 10^{-19}\,\rm{C}\).

Zum Artikel Zu den Aufgaben