Direkt zum Inhalt
Suchergebnisse 121 - 150 von 914

Charakteristische Strahlung

Grundwissen

  • Im kontinuierlichen RÖNTGEN-Spektrum können charakteristische Linien identifiziert werden, die sog. charakteristische Strahlung.
  • Ursache sind Übergänge von Elektronen zwischen spezifischen energetischen Elektronenschalen (K-Schale, L-Schale, M-Schale,...).
  • Die Kα-Linie ist in charakteristischen Spektren besonders stark ausgeprägt und die Lage der Linie im kontinuierlichen Spektrum stoffspezifisch.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im kontinuierlichen RÖNTGEN-Spektrum können charakteristische Linien identifiziert werden, die sog. charakteristische Strahlung.
  • Ursache sind Übergänge von Elektronen zwischen spezifischen energetischen Elektronenschalen (K-Schale, L-Schale, M-Schale,...).
  • Die Kα-Linie ist in charakteristischen Spektren besonders stark ausgeprägt und die Lage der Linie im kontinuierlichen Spektrum stoffspezifisch.

Zum Artikel Zu den Aufgaben

Energiezustände von Atomen

Grundwissen

  • Atome können nur Zustände mit ganz bestimmten, diskreten Energiezuständen annehmen.
  • Entsprechend haben die von einem Atom ausgesendeten Photonen jeweils genau die Energie, die zwischen zwei solchen diskreten Energieniveaus des Atoms liegt.
  • Um ein Atom anzuregen, benötigt es ebenfalls exakt einen solchen "passenden" Energiebetrag.
  • Das Auftreten von Linienspektren kann durch diskrete Energieniveaus erklärt werden.

Zum Artikel
Grundwissen

  • Atome können nur Zustände mit ganz bestimmten, diskreten Energiezuständen annehmen.
  • Entsprechend haben die von einem Atom ausgesendeten Photonen jeweils genau die Energie, die zwischen zwei solchen diskreten Energieniveaus des Atoms liegt.
  • Um ein Atom anzuregen, benötigt es ebenfalls exakt einen solchen "passenden" Energiebetrag.
  • Das Auftreten von Linienspektren kann durch diskrete Energieniveaus erklärt werden.

Zum Artikel Zu den Aufgaben

Gesetz von BOYLE und MARIOTTE

Grundwissen

  • Wird eine feste Menge (konstante Teilchenzahl \(N\)) eines Idealen Gases auf einer konstanten Temperatur \(T\) gehalten, während sich der Druck oder das Volumen der Gasmenge ändern, so spricht man von einer isothermen Zustandsänderung der Gasmenge.
  • Bei derartigen isothermen Zuständänderungen ist das Volumen \(V\) der Gasmenge umgekehrt proportional zum Druck \(p\)\[V \sim \frac{1}{p}\;\;\;\rm{bzw.}\;\;\;p \cdot V\;\rm{ist\;konstant}\;\;\;\rm{bzw.}\;\;\;p_1 \cdot V_1 = p_2 \cdot V_2\]

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wird eine feste Menge (konstante Teilchenzahl \(N\)) eines Idealen Gases auf einer konstanten Temperatur \(T\) gehalten, während sich der Druck oder das Volumen der Gasmenge ändern, so spricht man von einer isothermen Zustandsänderung der Gasmenge.
  • Bei derartigen isothermen Zuständänderungen ist das Volumen \(V\) der Gasmenge umgekehrt proportional zum Druck \(p\)\[V \sim \frac{1}{p}\;\;\;\rm{bzw.}\;\;\;p \cdot V\;\rm{ist\;konstant}\;\;\;\rm{bzw.}\;\;\;p_1 \cdot V_1 = p_2 \cdot V_2\]

Zum Artikel Zu den Aufgaben

Gesetz von GAY-LUSSAC

Grundwissen

  • Wird eine feste Menge (konstante Teilchenzahl \(N\)) eines Idealen Gases auf einem konstanten Druck \(p\) gehalten, während sich die Temperatur oder das Volumen der Gasmenge ändern, so spricht man von einer isobaren Zustandsänderung der Gasmenge.
  • Bei derartigen isobaren Zuständänderungen ist das Volumen \(V\) proportional zur Temperatur \(T\)\[V \sim T\;\;\;\rm{bzw.}\;\;\;\frac{V}{T} \;\rm{ist\;konstant}\;\;\;\rm{bzw.}\;\;\;\frac{V_1}{T_1} = \frac{V_2}{T_2}\]

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wird eine feste Menge (konstante Teilchenzahl \(N\)) eines Idealen Gases auf einem konstanten Druck \(p\) gehalten, während sich die Temperatur oder das Volumen der Gasmenge ändern, so spricht man von einer isobaren Zustandsänderung der Gasmenge.
  • Bei derartigen isobaren Zuständänderungen ist das Volumen \(V\) proportional zur Temperatur \(T\)\[V \sim T\;\;\;\rm{bzw.}\;\;\;\frac{V}{T} \;\rm{ist\;konstant}\;\;\;\rm{bzw.}\;\;\;\frac{V_1}{T_1} = \frac{V_2}{T_2}\]

Zum Artikel Zu den Aufgaben

Phasenübergänge

Grundwissen

  • Phasenübergänge sind zwischen allen Zuständen (fest. flüssig, gasförmig) möglich.
  • Bei Phasenübergängen muss Energie hinzugefügt werden bzw. wird Energie frei. Die Temperatur verändert sich dabei zunächst nicht.
  • Bei den Phasenübergängen verändern sich die Bindungen zwischen den Teilchen. Die potentielle Energie (Teil der inneren Energie) ändert sich hierbei

Zum Artikel Zu den Aufgaben
Grundwissen

  • Phasenübergänge sind zwischen allen Zuständen (fest. flüssig, gasförmig) möglich.
  • Bei Phasenübergängen muss Energie hinzugefügt werden bzw. wird Energie frei. Die Temperatur verändert sich dabei zunächst nicht.
  • Bei den Phasenübergängen verändern sich die Bindungen zwischen den Teilchen. Die potentielle Energie (Teil der inneren Energie) ändert sich hierbei

Zum Artikel Zu den Aufgaben

Erster Hauptsatz der Wärmelehre

Grundwissen

  • Die innere Energie \(E_{\rm{i}}\) eines Systems kann durch Zufuhr oder Entzug von mechanische Arbeit \(W\) und/oder einer Wärmemenge \(Q\) erhöht oder verringert werden.
  • Der 1. Hauptsatz der Wärmelehre lautet \(\Delta E_{\rm i} = W + Q\).

Zum Artikel
Grundwissen

  • Die innere Energie \(E_{\rm{i}}\) eines Systems kann durch Zufuhr oder Entzug von mechanische Arbeit \(W\) und/oder einer Wärmemenge \(Q\) erhöht oder verringert werden.
  • Der 1. Hauptsatz der Wärmelehre lautet \(\Delta E_{\rm i} = W + Q\).

Zum Artikel Zu den Aufgaben

Wärmeleitung

Grundwissen

  • Bei der Wärmeleitung bewegt sich nur die Wärme durch den Körper, die einzelnen Teilchen, aus denen der Körper besteht, bleiben dagegen an ihrem Platz
  • Wärmeleitung tritt deshalb meistens beim Wärmetransport in und zwischen Festkörpern auf
  • Metalle sind gute Wärmeleiter, Flüssigkeiten und Gase dagegen sind schlechte Wärmeleiter

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei der Wärmeleitung bewegt sich nur die Wärme durch den Körper, die einzelnen Teilchen, aus denen der Körper besteht, bleiben dagegen an ihrem Platz
  • Wärmeleitung tritt deshalb meistens beim Wärmetransport in und zwischen Festkörpern auf
  • Metalle sind gute Wärmeleiter, Flüssigkeiten und Gase dagegen sind schlechte Wärmeleiter

Zum Artikel Zu den Aufgaben

Wärmemitführung

Grundwissen

  • Bei der Wärmemitführung (Wärmeströmung, Konvektion) bewegt sich die Wärme mit den einzelnen Teilchen, aus denen der Körper besteht, durch den Körper hindurch - es findet also auch ein Materietransport statt
  • Wärmemitführung tritt in der Regel nur in Flüssigkeiten und Gasen auf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei der Wärmemitführung (Wärmeströmung, Konvektion) bewegt sich die Wärme mit den einzelnen Teilchen, aus denen der Körper besteht, durch den Körper hindurch - es findet also auch ein Materietransport statt
  • Wärmemitführung tritt in der Regel nur in Flüssigkeiten und Gasen auf.

Zum Artikel Zu den Aufgaben

Treibhauseffekt

Grundwissen

  • Man unterscheidet zwischen natürlichem und vom Menschen gemachten Treibhauseffekt.
  • Der natürliche Treibhauseffekt macht die Erde erst lebenswert.
  • Der menschengemachte Treibhauseffekt durch Ausstoß von Treibhausgasen sorgt für eine weitere Erderwärmung mit vielen negativen Folgen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man unterscheidet zwischen natürlichem und vom Menschen gemachten Treibhauseffekt.
  • Der natürliche Treibhauseffekt macht die Erde erst lebenswert.
  • Der menschengemachte Treibhauseffekt durch Ausstoß von Treibhausgasen sorgt für eine weitere Erderwärmung mit vielen negativen Folgen.

Zum Artikel Zu den Aufgaben

Stehende Wellen - Entstehung

Grundwissen

  • Stehende Wellen können bei Überlagerung von zwei Wellen gleicher Frequenz und gleicher Amplitude entstehen.
  • Bei stehenden Wellen bilden sich Knoten (keine Auslenkung) und Bäuche (maximale Auslenkung im Vergleich zur Umgebung) aus.
  • Der Abstand zwischen zwei Knoten bzw. Bäuchen beträgt \(\frac{\lambda}{2}\) der sich überlagernden Wellen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Stehende Wellen können bei Überlagerung von zwei Wellen gleicher Frequenz und gleicher Amplitude entstehen.
  • Bei stehenden Wellen bilden sich Knoten (keine Auslenkung) und Bäuche (maximale Auslenkung im Vergleich zur Umgebung) aus.
  • Der Abstand zwischen zwei Knoten bzw. Bäuchen beträgt \(\frac{\lambda}{2}\) der sich überlagernden Wellen.

Zum Artikel Zu den Aufgaben

Wellenfunktion

Grundwissen

  • Die Wellenfunktion beschreibt die Auslenkung eines von der Welle erfassten Teilchens in \(y\)-Richtung an einem beliebigen Ort \(x\) zu einem beliebigen Zeitpunkt \(t\).
  • Die Wellenfunktion für eine in positive \(x\)-Richtung laufende Welle lautet \(y(x;t) = \hat y \cdot \sin \left( {2\,\pi  \cdot \left( {\frac{t}{T} - \frac{x}{\lambda }} \right)} \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Wellenfunktion beschreibt die Auslenkung eines von der Welle erfassten Teilchens in \(y\)-Richtung an einem beliebigen Ort \(x\) zu einem beliebigen Zeitpunkt \(t\).
  • Die Wellenfunktion für eine in positive \(x\)-Richtung laufende Welle lautet \(y(x;t) = \hat y \cdot \sin \left( {2\,\pi  \cdot \left( {\frac{t}{T} - \frac{x}{\lambda }} \right)} \right)\)

Zum Artikel Zu den Aufgaben

Gesamtkraft mehrerer Kräfte

Grundwissen

  • Wenn zwei Kräfte an einem Punkt angreifen, dann kann man zeichnerisch die sogenannte Gesamtkraft \(\vec F_{\rm{res}}\) bestimmen. Diese Gesamtkraft hat die gleiche Wirkung auf den Körper hat wie die beiden Einzelkräfte zusammen. 
  • Der zweite Kraftvektor wird so parallel verschoben, dass sein Fußpunkt an der Spitze des ersten Kraftvektors zu liegen kommt.
  • Der Vektor der Gesamtkraft beginnt beim Fußpunkt des ersten Kraftvektors und endet an der Spitze des zweiten Kraftvektors.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn zwei Kräfte an einem Punkt angreifen, dann kann man zeichnerisch die sogenannte Gesamtkraft \(\vec F_{\rm{res}}\) bestimmen. Diese Gesamtkraft hat die gleiche Wirkung auf den Körper hat wie die beiden Einzelkräfte zusammen. 
  • Der zweite Kraftvektor wird so parallel verschoben, dass sein Fußpunkt an der Spitze des ersten Kraftvektors zu liegen kommt.
  • Der Vektor der Gesamtkraft beginnt beim Fußpunkt des ersten Kraftvektors und endet an der Spitze des zweiten Kraftvektors.

Zum Artikel Zu den Aufgaben

Zerlegung einer Kraft in zwei Komponenten

Grundwissen

  • Zur eindeutigen Bestimmung des Kräfteparallelogramms müssen z.B. die resultierende Kraft und die Richtungen beider Teilkräfte bekannt sein.
  • Weg 1: Zeichnen zweier Geraden, die zu den vorgegebenen Richtungen parallel sind und durch die Pfeilspitze des gegebenen Kraftvektors gehen.
  • Weg 2: Parallelverschiebung eines Kraftvektors entlang des anderen Kraftvektors.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zur eindeutigen Bestimmung des Kräfteparallelogramms müssen z.B. die resultierende Kraft und die Richtungen beider Teilkräfte bekannt sein.
  • Weg 1: Zeichnen zweier Geraden, die zu den vorgegebenen Richtungen parallel sind und durch die Pfeilspitze des gegebenen Kraftvektors gehen.
  • Weg 2: Parallelverschiebung eines Kraftvektors entlang des anderen Kraftvektors.

Zum Artikel Zu den Aufgaben

Seil und Rolle

Grundwissen

  • An einer Rolle herrscht Kräftegleichgewicht, wenn die beiden Seilkräfte \(F\) links und rechts gleich groß sind und die den Seilkräften entgegengerichtete Kraft auf die Rollenachse \(2\cdot F\) beträgt.
  • Durch den Einsatz einer losen Rolle halbiert sich die notwendige Zugkraft \(F\) und eine Last mit der Gewichtskraft \(F_g\) anzuheben, dafür muss du das Seil doppelt so lange ziehen.
  • Du kannst lose und feste Rollen zu einem Flaschenzug kombinieren.

Zum Artikel
Grundwissen

  • An einer Rolle herrscht Kräftegleichgewicht, wenn die beiden Seilkräfte \(F\) links und rechts gleich groß sind und die den Seilkräften entgegengerichtete Kraft auf die Rollenachse \(2\cdot F\) beträgt.
  • Durch den Einsatz einer losen Rolle halbiert sich die notwendige Zugkraft \(F\) und eine Last mit der Gewichtskraft \(F_g\) anzuheben, dafür muss du das Seil doppelt so lange ziehen.
  • Du kannst lose und feste Rollen zu einem Flaschenzug kombinieren.

Zum Artikel Zu den Aufgaben

Hebel

Grundwissen

  • Als Hebel bezeichnet man einen starren Körper, der um eine feste Drehachse gedreht werden kann, z.B. eine Wippe. 
  • Ein zweiseitiger Hebel ist im Gleichgewicht, wenn die Produkte aus Kraft \(F\) und Hebelarm \(a\) auf beiden Seiten der Drehachse gleich groß ist: \(F_{\rm{l}}\cdot a_{\rm{l}}=F_{\rm{r}}\cdot a_{\rm{r}}\)
  • Allgemein ist der Hebelarm \(a\) bestimmt durch den Abstand zwischen Drehachse \(\rm{D}\) und der Wirkungslinie der Kraft \(F\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Hebel bezeichnet man einen starren Körper, der um eine feste Drehachse gedreht werden kann, z.B. eine Wippe. 
  • Ein zweiseitiger Hebel ist im Gleichgewicht, wenn die Produkte aus Kraft \(F\) und Hebelarm \(a\) auf beiden Seiten der Drehachse gleich groß ist: \(F_{\rm{l}}\cdot a_{\rm{l}}=F_{\rm{r}}\cdot a_{\rm{r}}\)
  • Allgemein ist der Hebelarm \(a\) bestimmt durch den Abstand zwischen Drehachse \(\rm{D}\) und der Wirkungslinie der Kraft \(F\).

Zum Artikel Zu den Aufgaben

Energieformen

Grundwissen

  • Energie kann in unterschiedlichen Formen vorliegen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Energie kann in unterschiedlichen Formen vorliegen.

Zum Artikel Zu den Aufgaben

Grundbegriffe zu Periodischen Bewegungen und Schwingungen

Grundwissen

  • Bei einer periodischen Bewegung hat ein Körper nach einer Periodendauer \(T\) wieder den gleichen Bewegungszustand.
  • Für die Frequenz einer periodischen Bewegung gilt \(f=\frac{1}{T}\).
  • Die Amplitude einer Schwingung ist der Betrag des Maximalwerts der Auslenkung aus der Ruhelage.

Zum Artikel
Grundwissen

  • Bei einer periodischen Bewegung hat ein Körper nach einer Periodendauer \(T\) wieder den gleichen Bewegungszustand.
  • Für die Frequenz einer periodischen Bewegung gilt \(f=\frac{1}{T}\).
  • Die Amplitude einer Schwingung ist der Betrag des Maximalwerts der Auslenkung aus der Ruhelage.

Zum Artikel Zu den Aufgaben

Klassische Röntgenaufnahmen

Grundwissen

  • Röntgenstrahlen bzw. Röntgenbilder sind in der Medizin wichtige Diagnosewerkzeuge.
  • Dabei wird ausgenutzt, dass unterschiedliches Gewebe und Knochen die Röntgenstrahlung unterschiedlich stark absorbieren (schwächen).
  • Moderne digitale Röntgengeräte senken die durch eine Röntgenaufnahme verursachte Strahlenbelastung stark.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Röntgenstrahlen bzw. Röntgenbilder sind in der Medizin wichtige Diagnosewerkzeuge.
  • Dabei wird ausgenutzt, dass unterschiedliches Gewebe und Knochen die Röntgenstrahlung unterschiedlich stark absorbieren (schwächen).
  • Moderne digitale Röntgengeräte senken die durch eine Röntgenaufnahme verursachte Strahlenbelastung stark.

Zum Artikel Zu den Aufgaben

Wahrscheinlichkeitsverteilungen beim H-Atom

Grundwissen

  • Die Wahrscheinlichkeitsverteilung kann mit verschiedenen Darstellungsformen visualisiert werden.

Zum Artikel
Grundwissen

  • Die Wahrscheinlichkeitsverteilung kann mit verschiedenen Darstellungsformen visualisiert werden.

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung einer Welle

Grundwissen

  • Zentrale Größen zur Beschreibung einer Welle sind ihre Amplitude \(\hat{y}\), ihre Schwingungsdauer \(T\), ihre Frequenz \(f\) und ihre Phasen- bzw. Ausbreitungsgeschwindigkeit \(c\).
  • Dabei gilt der Zusammenhang \(\lambda  = c \cdot T = \frac{c}{f}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zentrale Größen zur Beschreibung einer Welle sind ihre Amplitude \(\hat{y}\), ihre Schwingungsdauer \(T\), ihre Frequenz \(f\) und ihre Phasen- bzw. Ausbreitungsgeschwindigkeit \(c\).
  • Dabei gilt der Zusammenhang \(\lambda  = c \cdot T = \frac{c}{f}\)

Zum Artikel Zu den Aufgaben

Schweredruck

Grundwissen

  • Als Schweredruck bezeichnet man einen Druck, den ein Körper nur auf Grund der Gewichtskraft der über ihm liegenden Flüssigkeits- oder Gassäule erfährt.
  • Für den Schweredruck gilt \({p = \rho \cdot g \cdot h}\).
  • Der Schweredruck ist unabhängig von Form und Querschnittsfläche der Flüssigkeitssäule.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Schweredruck bezeichnet man einen Druck, den ein Körper nur auf Grund der Gewichtskraft der über ihm liegenden Flüssigkeits- oder Gassäule erfährt.
  • Für den Schweredruck gilt \({p = \rho \cdot g \cdot h}\).
  • Der Schweredruck ist unabhängig von Form und Querschnittsfläche der Flüssigkeitssäule.

Zum Artikel Zu den Aufgaben

Gesetz von HOOKE

Grundwissen

  • Das HOOKEsche Gesetz beschreibt die Wirkung einer Kraft auf elastische Körper wie Federn.
  • Die Federkonstante (Federhärte) wird mit \(D\) bezeichnet.
  • Es gilt \(F=D\cdot \Delta x\) mit der Längenänderung der \(\Delta x\) der Feder.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das HOOKEsche Gesetz beschreibt die Wirkung einer Kraft auf elastische Körper wie Federn.
  • Die Federkonstante (Federhärte) wird mit \(D\) bezeichnet.
  • Es gilt \(F=D\cdot \Delta x\) mit der Längenänderung der \(\Delta x\) der Feder.

Zum Artikel Zu den Aufgaben

Umrechnen von Einheiten der Kraft

Grundwissen

  • Physikalische Größen bestehen immer aus Zahlenwert (Maßzahl) und Einheit.
  • Verschiedene Einheiten der Kraft kannst du ineinander umrechnen.

Zum Artikel
Grundwissen

  • Physikalische Größen bestehen immer aus Zahlenwert (Maßzahl) und Einheit.
  • Verschiedene Einheiten der Kraft kannst du ineinander umrechnen.

Zum Artikel Zu den Aufgaben

Umstellen einer Gleichung

Grundwissen

  • Formeln musst du manchmal umstellen, um die gesuchte Größe berechnen zu können.
  • Hilfreich als Merkregel ist dabei das entsprechende Größendreieck.

Zum Artikel
Grundwissen

  • Formeln musst du manchmal umstellen, um die gesuchte Größe berechnen zu können.
  • Hilfreich als Merkregel ist dabei das entsprechende Größendreieck.

Zum Artikel Zu den Aufgaben

Impuls und Impulserhaltungssatz

Grundwissen

  • Der Impuls ist das Produkt von Masse und Geschwindigkeit eines Körpers: \(\vec{p}=m\cdot\vec{v}\).
  • In einem abgeschlossenen System ist der Impuls erhalten (Impulserhaltungssatz).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Impuls ist das Produkt von Masse und Geschwindigkeit eines Körpers: \(\vec{p}=m\cdot\vec{v}\).
  • In einem abgeschlossenen System ist der Impuls erhalten (Impulserhaltungssatz).

Zum Artikel Zu den Aufgaben

Kraftwandler

Grundwissen

  • Kraftwandler ändern den Angriffspunkt, die Richtung, den Betrag oder mehrere dieser Eigenschaften einer Kraft.
  • typische Beispiele für Kraftwandler sind Seil, Hebel, Rolle und Flaschenzug.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Kraftwandler ändern den Angriffspunkt, die Richtung, den Betrag oder mehrere dieser Eigenschaften einer Kraft.
  • typische Beispiele für Kraftwandler sind Seil, Hebel, Rolle und Flaschenzug.

Zum Artikel Zu den Aufgaben

Kräfteaddition

Grundwissen

  • Wirken zwei oder mehr Kräfte auf einen Körper, so kannst du diese durch eine einzige resultierende Kraft \(\vec{F_{\rm{r}}}\) ersetzen.
  • Die Richtung und den Betrag (die Stärke) der resultierenden Kraft kannst du grafisch ermitteln.
  • Zeigen die angreifenden Kräfte in unterschiedliche Richtungen, so addierst du diese mittels Kräfteparallelogramm oder Kräftedreieck.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wirken zwei oder mehr Kräfte auf einen Körper, so kannst du diese durch eine einzige resultierende Kraft \(\vec{F_{\rm{r}}}\) ersetzen.
  • Die Richtung und den Betrag (die Stärke) der resultierenden Kraft kannst du grafisch ermitteln.
  • Zeigen die angreifenden Kräfte in unterschiedliche Richtungen, so addierst du diese mittels Kräfteparallelogramm oder Kräftedreieck.

Zum Artikel Zu den Aufgaben

Flächen- und Volumenberechnung

Grundwissen

  • Flächeneinheiten besitzen immer die Hochzahl \(2\), z.B. \(\rm{cm^2}\), Volumeneinheiten die Hochzahl \(3\), z.B. \(\rm{cm^3}\).
  • Die Umrechnungszahl von einer Flächeneinheit zur benachbarten ist \(100\).
  • Die Umrechnungszahl von einer Volumeneinheit zur benachbarten ist \(1000\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Flächeneinheiten besitzen immer die Hochzahl \(2\), z.B. \(\rm{cm^2}\), Volumeneinheiten die Hochzahl \(3\), z.B. \(\rm{cm^3}\).
  • Die Umrechnungszahl von einer Flächeneinheit zur benachbarten ist \(100\).
  • Die Umrechnungszahl von einer Volumeneinheit zur benachbarten ist \(1000\).

Zum Artikel Zu den Aufgaben

Warum ist der Laser wichtig für uns?

Grundwissen

  • Laser kommen in verschiedensten Lebensbereichen zum Einsatz: von der Medizin, über die Datenübertragung im Internet bis hin zur Messwertgewinnung für die Wettervorhersage.

Zum Artikel
Grundwissen

  • Laser kommen in verschiedensten Lebensbereichen zum Einsatz: von der Medizin, über die Datenübertragung im Internet bis hin zur Messwertgewinnung für die Wettervorhersage.

Zum Artikel Zu den Aufgaben

Bestandteile eines Lasers

Grundwissen

  • Laser habe drei zentrale Bestandteile: das Lasermedium, die Pumpe und den Resonator.
  • Die Pumpe bringt Energie ins System und sorgt für eine Besetzungsinversion im Lasermedium.
  • Der Resonator, eine Anordnung aus zwei parallelen Spiegeln, verstärkt den Laserstrahl und richtet ihn aus.

Zum Artikel
Grundwissen

  • Laser habe drei zentrale Bestandteile: das Lasermedium, die Pumpe und den Resonator.
  • Die Pumpe bringt Energie ins System und sorgt für eine Besetzungsinversion im Lasermedium.
  • Der Resonator, eine Anordnung aus zwei parallelen Spiegeln, verstärkt den Laserstrahl und richtet ihn aus.

Zum Artikel Zu den Aufgaben