Direkt zum Inhalt
Suchergebnisse 31 - 60 von 95

Energieumwandlung

Grundwissen

  • Energie kann zwischen verschiedenen Energieformen umgewandelt werden, z.B. von potentieller in kinetische Energie.
  • Bei einer Umwandlung geht jedoch zumeist ein kleiner Teil nicht in die gewünschte Energieform über und steht anschließend nicht mehr für weitere Umwandlungen zur Verfügung.
  • Finden mehrere Energieumwandlungen hintereinander statt, so werden diese häufig in einem Energieflussdiagrammen dargestellt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Energie kann zwischen verschiedenen Energieformen umgewandelt werden, z.B. von potentieller in kinetische Energie.
  • Bei einer Umwandlung geht jedoch zumeist ein kleiner Teil nicht in die gewünschte Energieform über und steht anschließend nicht mehr für weitere Umwandlungen zur Verfügung.
  • Finden mehrere Energieumwandlungen hintereinander statt, so werden diese häufig in einem Energieflussdiagrammen dargestellt.

Zum Artikel Zu den Aufgaben

Wirkungsgrad

Grundwissen

  • Der Wirkungsgrad gibt an, welcher Anteil der zugeführten Energie bei einer Umwandlung in die gewünschte Energieform umgewandelt wird.
  • Für den Wirkungsgrad gilt \(\eta=\frac{\Delta E_{\rm{nutz}}}{\Delta E_{\rm{zu}}}\).
  • Der Wirkungsgrad kann auch entsprechend über die Leistung ermittelt werden: \(\eta=\frac{P_{\rm{nutz}}}{P_{\rm{zu}}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Wirkungsgrad gibt an, welcher Anteil der zugeführten Energie bei einer Umwandlung in die gewünschte Energieform umgewandelt wird.
  • Für den Wirkungsgrad gilt \(\eta=\frac{\Delta E_{\rm{nutz}}}{\Delta E_{\rm{zu}}}\).
  • Der Wirkungsgrad kann auch entsprechend über die Leistung ermittelt werden: \(\eta=\frac{P_{\rm{nutz}}}{P_{\rm{zu}}}\)

Zum Artikel Zu den Aufgaben

Viertakt-Ottomotor

Grundwissen

  • Die 4 Takte sind: Ansaugen, Verdichten, Arbeiten, Auspuffen
  • Mehrere Zylinder eines Motors laufen versetzt. Ziel ist, dass immer ein Zylinder gerade im Arbeitstakt ist.
  • Der Wirkungsgrad eines Ottomotors liegt im Idealfall bei \(\eta=35\,\%\), meist jedoch deutlich darunter.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die 4 Takte sind: Ansaugen, Verdichten, Arbeiten, Auspuffen
  • Mehrere Zylinder eines Motors laufen versetzt. Ziel ist, dass immer ein Zylinder gerade im Arbeitstakt ist.
  • Der Wirkungsgrad eines Ottomotors liegt im Idealfall bei \(\eta=35\,\%\), meist jedoch deutlich darunter.

Zum Artikel Zu den Aufgaben

Bahngeschwindigkeit und Winkelgeschwindigkeit

Grundwissen

  • Die Bahngeschwindigkeit \(v\) ist der Quotient aus der auf der Kreisbahn zurückgelegten Streckenlänge und der dafür benötigten Zeit: \(v = \frac{\Delta s}{\Delta t}\) bzw. \(v = \frac{2 \cdot \pi \cdot r}{T}\).
  • Die Winkelgeschwindigkeit \(\omega\) ist der Quotient aus der Weite des vom Bahnradius überstrichenen Winkels und der dafür benötigten Zeit: \(\omega = \frac{\Delta \varphi}{\Delta t}\) bzw. \(\omega = \frac{2 \cdot \pi}{T}\).
  • Zwischen der Bahngeschwindigkeit und der Winkelgeschwindigkeit besteht der Zusammenhang \(v = \omega \cdot r\;\;\;{\rm{bzw.}}\;\;\;\omega = \frac{v}{r}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Bahngeschwindigkeit \(v\) ist der Quotient aus der auf der Kreisbahn zurückgelegten Streckenlänge und der dafür benötigten Zeit: \(v = \frac{\Delta s}{\Delta t}\) bzw. \(v = \frac{2 \cdot \pi \cdot r}{T}\).
  • Die Winkelgeschwindigkeit \(\omega\) ist der Quotient aus der Weite des vom Bahnradius überstrichenen Winkels und der dafür benötigten Zeit: \(\omega = \frac{\Delta \varphi}{\Delta t}\) bzw. \(\omega = \frac{2 \cdot \pi}{T}\).
  • Zwischen der Bahngeschwindigkeit und der Winkelgeschwindigkeit besteht der Zusammenhang \(v = \omega \cdot r\;\;\;{\rm{bzw.}}\;\;\;\omega = \frac{v}{r}\)

Zum Artikel Zu den Aufgaben

Zentripetalkraft

Grundwissen

  • Eine gleichförmige Kreisbewegung benötigt immer eine zum Drehzentrum gerichtete Kraft; eine solche Kraft bezeichnen wir als Zentripetalkraft \(\vec F_{\rm{ZP}}\).
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot {\frac{v^2}{r}}\) wirken.
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot \omega^2 \cdot r\) wirken.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Eine gleichförmige Kreisbewegung benötigt immer eine zum Drehzentrum gerichtete Kraft; eine solche Kraft bezeichnen wir als Zentripetalkraft \(\vec F_{\rm{ZP}}\).
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot {\frac{v^2}{r}}\) wirken.
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot \omega^2 \cdot r\) wirken.

Zum Artikel Zu den Aufgaben

Bewegungsgesetze der Harmonischen Schwingung

Grundwissen

  • Zeit-Ort-Gesetz: \(y(t) = \hat y \cdot \sin \left( {\omega  \cdot t} \right)\) (oder \(y(t) = \hat y \cdot \cos \left( {\omega  \cdot t} \right)\)
  • Zeit-Geschwindigkeit-Gesetz: \(v(t) =\omega \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\) (oder \(v(t) = -\omega \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\))
  • Zeit-Beschleunigung-Gesetz: \(a(t) = - {\omega ^2} \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\) (oder \(a(t) = -{\omega ^2} \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\))

Zum Artikel
Grundwissen

  • Zeit-Ort-Gesetz: \(y(t) = \hat y \cdot \sin \left( {\omega  \cdot t} \right)\) (oder \(y(t) = \hat y \cdot \cos \left( {\omega  \cdot t} \right)\)
  • Zeit-Geschwindigkeit-Gesetz: \(v(t) =\omega \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\) (oder \(v(t) = -\omega \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\))
  • Zeit-Beschleunigung-Gesetz: \(a(t) = - {\omega ^2} \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\) (oder \(a(t) = -{\omega ^2} \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\))

Zum Artikel Zu den Aufgaben

Wellentypen

Grundwissen

  • Wir unterteilen Wellen nach der Richtung, in der sich die Teilchen im Medium bewegen, in Transversalwellen, Longitudinalwellen und Wasserwellen.
  • Wir unterteilen Wellen nach der Art, wie sie sich im Raum ausbreiten, in Kreis- bzw. Kugelwellen und ebene Wellen.

Zum Artikel
Grundwissen

  • Wir unterteilen Wellen nach der Richtung, in der sich die Teilchen im Medium bewegen, in Transversalwellen, Longitudinalwellen und Wasserwellen.
  • Wir unterteilen Wellen nach der Art, wie sie sich im Raum ausbreiten, in Kreis- bzw. Kugelwellen und ebene Wellen.

Zum Artikel Zu den Aufgaben

Interferenz

Grundwissen

  • Konstruktive Interferenz bedeutet eine Verstärkung, destruktive Interferenz bedeutet eine Auslöschung.
  • Der Gangunterschied \(\Delta s\) zwischen den zwei Quellen und dem Empfänger bestimmt, ob konstruktive oder destruktive Interferenz auftritt.
  • Winkelweite und Gangunterschied lassen sich besonders einfach berechnen, wenn der Abstand Sender-Empfänger groß ist gegenüber dem Abstand der beiden Sender.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Konstruktive Interferenz bedeutet eine Verstärkung, destruktive Interferenz bedeutet eine Auslöschung.
  • Der Gangunterschied \(\Delta s\) zwischen den zwei Quellen und dem Empfänger bestimmt, ob konstruktive oder destruktive Interferenz auftritt.
  • Winkelweite und Gangunterschied lassen sich besonders einfach berechnen, wenn der Abstand Sender-Empfänger groß ist gegenüber dem Abstand der beiden Sender.

Zum Artikel Zu den Aufgaben

Lichtbrechung - Einführung

Grundwissen

  • Ein Lichtstrahl ändert an der Grenzfläche zweier Medien unterschiedlicher optischer Dichte seine Ausbreitungsrichtung. Der Strahl wird gebrochen.
  • Beim Übergang vom optisch dünneren zum optisch dichteren Medium wird der Strahl zum Lot hin gebrochen \({\left(\alpha_{1}> \alpha_{2}\right)}\).
  • Beim Übergang vom optisch dichteren zum optisch dünneren Medium wird der Strahl vom Lot weg gebrochen \({\left(\alpha_{1}< \alpha_{2}\right)}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Lichtstrahl ändert an der Grenzfläche zweier Medien unterschiedlicher optischer Dichte seine Ausbreitungsrichtung. Der Strahl wird gebrochen.
  • Beim Übergang vom optisch dünneren zum optisch dichteren Medium wird der Strahl zum Lot hin gebrochen \({\left(\alpha_{1}> \alpha_{2}\right)}\).
  • Beim Übergang vom optisch dichteren zum optisch dünneren Medium wird der Strahl vom Lot weg gebrochen \({\left(\alpha_{1}< \alpha_{2}\right)}\).

Zum Artikel Zu den Aufgaben

Linsenformen

Grundwissen

Joachim Herz Stiftung
Abb. 1 Strahlengang bei Konvex- und Konkavlinsen
  • Konvexlinsen, auch Sammellinsen genannt, brechen parallel einfallende Lichtstrahlen so, dass sich die Lichtstrahlen im Brennpunkt kreuzen.
  • Konkavlinsen, auch Zerstreuungslinsen genannt, brechen parallel einfallende Lichtstrahlen so, dass sich die Lichtstrahlen im Raum zerstreuen.
  • Die Sammel- bzw. Zerstreuungswirkung von Linsen kann mithilfe der Brechungseigenschaften von Prismen erklärt werden.

Zum Artikel
Grundwissen

Joachim Herz Stiftung
Abb. 1 Strahlengang bei Konvex- und Konkavlinsen
  • Konvexlinsen, auch Sammellinsen genannt, brechen parallel einfallende Lichtstrahlen so, dass sich die Lichtstrahlen im Brennpunkt kreuzen.
  • Konkavlinsen, auch Zerstreuungslinsen genannt, brechen parallel einfallende Lichtstrahlen so, dass sich die Lichtstrahlen im Raum zerstreuen.
  • Die Sammel- bzw. Zerstreuungswirkung von Linsen kann mithilfe der Brechungseigenschaften von Prismen erklärt werden.

Zum Artikel Zu den Aufgaben

Begriffe bei der Linsenabbildung

Grundwissen

  • Bei Konvexlinsen ist der Brennpunkt \(\rm{F_1}\) der Punkt, in dem sich parallel zur optischen Achse verlaufende Lichtstrahlen nach der Brechung durch die Linse auf der optischen Achse schneiden.
  • Bei Konkavlinsen ist der Brennpunkt \(\rm{F_1}\) der Schnittpunkt der nach rückwärts verlängerten, gebrochenen Strahlen.
  • Die Brennweite \(f\) ist der Abstand des Brennpunktes zu Linsenebene.
  • Gegenstandsweite \(g\) und Gegenstandsgröße \(G\) beziehen sich auf den abzubildenden Gegenstand, Bildweite \(b\) und Bildgröße \(B\) beziehen sich auf das Bild des Gegenstandes.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei Konvexlinsen ist der Brennpunkt \(\rm{F_1}\) der Punkt, in dem sich parallel zur optischen Achse verlaufende Lichtstrahlen nach der Brechung durch die Linse auf der optischen Achse schneiden.
  • Bei Konkavlinsen ist der Brennpunkt \(\rm{F_1}\) der Schnittpunkt der nach rückwärts verlängerten, gebrochenen Strahlen.
  • Die Brennweite \(f\) ist der Abstand des Brennpunktes zu Linsenebene.
  • Gegenstandsweite \(g\) und Gegenstandsgröße \(G\) beziehen sich auf den abzubildenden Gegenstand, Bildweite \(b\) und Bildgröße \(B\) beziehen sich auf das Bild des Gegenstandes.

Zum Artikel Zu den Aufgaben

Licht als Welle

Grundwissen

  • Im Wellenmodell wird Licht als Welle angesehen - ähnlich wie Wasser- oder Schallwellen.
  • Jeder Ort einer Wellenfront ist dabei Ausgangspunkt einer neuen Elementarwelle mit gleicher Geschwindigkeit und Frequenz.
  • Beugung und Interferenz am Doppelspalt können im Wellenmodell erklärt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Wellenmodell wird Licht als Welle angesehen - ähnlich wie Wasser- oder Schallwellen.
  • Jeder Ort einer Wellenfront ist dabei Ausgangspunkt einer neuen Elementarwelle mit gleicher Geschwindigkeit und Frequenz.
  • Beugung und Interferenz am Doppelspalt können im Wellenmodell erklärt werden.

Zum Artikel Zu den Aufgaben

Zwei-Quellen-Interferenz

Grundwissen

  • Gibt es nur zwei Quellen bzw. Sender, so spricht man von Zwei-Quellen-Interferenz.
  • Winkelweite und Gangunterschied lassen sich besonders einfach berechnen, wenn der Abstand Sender-Empfänger groß ist gegenüber dem Abstand der beiden Sender.
  • Aus dem Beugungsbild von Licht am Doppelspalt, kann man die Wellenlänge des Lichtes bestimmen.

Zum Artikel
Grundwissen

  • Gibt es nur zwei Quellen bzw. Sender, so spricht man von Zwei-Quellen-Interferenz.
  • Winkelweite und Gangunterschied lassen sich besonders einfach berechnen, wenn der Abstand Sender-Empfänger groß ist gegenüber dem Abstand der beiden Sender.
  • Aus dem Beugungsbild von Licht am Doppelspalt, kann man die Wellenlänge des Lichtes bestimmen.

Zum Artikel Zu den Aufgaben

Vielfachspalt und Gitter

Grundwissen

  • Durch Verwendung mehrerer Spalte werden die Interferenzmaxima intensiver und schärfer.
  • Aus dem Abstand zwischen den Hauptmaxima kann bei bekanntem Spaltabstand sehr präzise die Wellenlänge des Lichtes berechnet werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Durch Verwendung mehrerer Spalte werden die Interferenzmaxima intensiver und schärfer.
  • Aus dem Abstand zwischen den Hauptmaxima kann bei bekanntem Spaltabstand sehr präzise die Wellenlänge des Lichtes berechnet werden.

Zum Artikel Zu den Aufgaben

Vom Stromkreis zum Schaltplan

Grundwissen

  • Auf Fotos sind nicht alle Elemente einer elektrischen Schaltung gut und klar zu erkennen.
  • Ein Schaltplan ist eine vereinfachte Darstellung einer elektrischen Schaltung.
  • Die verschiedenen Schaltsymbole für die Bauteile sind in einer Norm festgelegt.
  • Schaltpläne können auch am Computer erstellt werden

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auf Fotos sind nicht alle Elemente einer elektrischen Schaltung gut und klar zu erkennen.
  • Ein Schaltplan ist eine vereinfachte Darstellung einer elektrischen Schaltung.
  • Die verschiedenen Schaltsymbole für die Bauteile sind in einer Norm festgelegt.
  • Schaltpläne können auch am Computer erstellt werden

Zum Artikel Zu den Aufgaben

Stromkreismodelle

Grundwissen

  • Mit Hilfe verschiedener Modelle kannst du dir die Abläufe im Stromkreis vorstellen und erklären.
  • Du kannst dir einen Stromkreis wie einen offenen Wasserkreislauf vorstellen.
  • Du kannst dir einen Stromkreis wie eine Fahrradkette, die ein Rad antreibt, vorstellen.
  • Du kannst dir einen Stromkreis mit Hilfe von Luftdruck und Elektronengasdruck vorstellen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Mit Hilfe verschiedener Modelle kannst du dir die Abläufe im Stromkreis vorstellen und erklären.
  • Du kannst dir einen Stromkreis wie einen offenen Wasserkreislauf vorstellen.
  • Du kannst dir einen Stromkreis wie eine Fahrradkette, die ein Rad antreibt, vorstellen.
  • Du kannst dir einen Stromkreis mit Hilfe von Luftdruck und Elektronengasdruck vorstellen.

Zum Artikel Zu den Aufgaben

Harmonische Schwingungen

Grundwissen

  • Ob eine Schwingung harmonisch ist wird durch eine der beiden folgenden Bedingungen festgelegt.
    A: Die Bewegung des schwingenden Körpers stimmt mit der Projektion einer gleichförmigen Kreisbewegung überein und kann deshalb durch eine Sinus- oder Kosinusfunktion, z.B. \(y(t) = \hat y \cdot \sin \left( {\omega  \cdot t} \right)\) oder \(y(t) = \hat y \cdot \cos \left( {\omega  \cdot t} \right)\) beschrieben werden.
    B: Die rücktreibende Kraft auf den schwingenden Körper ist entgegengesetzt gerichtet und betraglich proportional zur Auslenkung des Körpers aus der Ruhelage, kurz \({{ F}_{{\rm{rück}}}} =  - k \cdot y\). Wir sprechen dabei vom sogenannten linearen Kraftgesetz.
  • Erfüllt eine Schwingung eine dieser beiden Bedingungen, so erfüllt sie immer auch die andere.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ob eine Schwingung harmonisch ist wird durch eine der beiden folgenden Bedingungen festgelegt.
    A: Die Bewegung des schwingenden Körpers stimmt mit der Projektion einer gleichförmigen Kreisbewegung überein und kann deshalb durch eine Sinus- oder Kosinusfunktion, z.B. \(y(t) = \hat y \cdot \sin \left( {\omega  \cdot t} \right)\) oder \(y(t) = \hat y \cdot \cos \left( {\omega  \cdot t} \right)\) beschrieben werden.
    B: Die rücktreibende Kraft auf den schwingenden Körper ist entgegengesetzt gerichtet und betraglich proportional zur Auslenkung des Körpers aus der Ruhelage, kurz \({{ F}_{{\rm{rück}}}} =  - k \cdot y\). Wir sprechen dabei vom sogenannten linearen Kraftgesetz.
  • Erfüllt eine Schwingung eine dieser beiden Bedingungen, so erfüllt sie immer auch die andere.

Zum Artikel Zu den Aufgaben

Eigenschaften von Permanentmagneten

Grundwissen

  • Permanentmagnete besitzen zwei unterschiedliche Pole: einen Nordpol und einen Südpol.
  • Gleichartige Pole stoßen sich ab, ungleichartige Pole ziehen sich an.
  • Zerbrichst du einen Stabmagnet, so entstehen zwei Magnete, von denen wieder jeder Magnet einen Nordpol und einen Südpol hat.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Permanentmagnete besitzen zwei unterschiedliche Pole: einen Nordpol und einen Südpol.
  • Gleichartige Pole stoßen sich ab, ungleichartige Pole ziehen sich an.
  • Zerbrichst du einen Stabmagnet, so entstehen zwei Magnete, von denen wieder jeder Magnet einen Nordpol und einen Südpol hat.

Zum Artikel Zu den Aufgaben

Magnetische Influenz

Grundwissen

  • Wenn du einen Magneten Nahe an einen zuvor nicht magnetischen Eisenstab bringst, wird dieser zu einem Magneten - diesen Vorgang nennt  man magnetische Influenz.
  • Die im Eisen enthaltenen Elementarmagnete richten sich dabei aus.
  • Magnetische Influenz tritt bei ferromagnetischen Stoffen wie Eisen, Kobalt, Nickel auf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn du einen Magneten Nahe an einen zuvor nicht magnetischen Eisenstab bringst, wird dieser zu einem Magneten - diesen Vorgang nennt  man magnetische Influenz.
  • Die im Eisen enthaltenen Elementarmagnete richten sich dabei aus.
  • Magnetische Influenz tritt bei ferromagnetischen Stoffen wie Eisen, Kobalt, Nickel auf.

Zum Artikel Zu den Aufgaben

Elektrische Spannung

Grundwissen

  • Als Spannung bezeichnet man die Fähigkeit einer elektrischen Quelle, in einem Stromkreis einen Strom aufrechtzuerhalten.
  • Im Modell des offenen Wasserkreislaufs entspricht die Spannung dem Höhenunterschied der Vorratsbehälter.
  • Die elektrische Spannung hat das Formelzeichen \(U\) und wird in der Einheit \([U]=1\,\rm{V}\) (Volt) angegeben.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Spannung bezeichnet man die Fähigkeit einer elektrischen Quelle, in einem Stromkreis einen Strom aufrechtzuerhalten.
  • Im Modell des offenen Wasserkreislaufs entspricht die Spannung dem Höhenunterschied der Vorratsbehälter.
  • Die elektrische Spannung hat das Formelzeichen \(U\) und wird in der Einheit \([U]=1\,\rm{V}\) (Volt) angegeben.

Zum Artikel Zu den Aufgaben

LORENTZ-Kraft

Grundwissen

  • Bewegen sich Ladungsträger senkrecht oder schräg zu einem Magnetfeld, so wirkt eine Lorentzkraft auf die Ladungsträger.
  • Die Kraftrichtung kann mit der Drei-Finger-Regel bestimmt werden.
  • Die Lorentzkraft wirkt auch auf freie Ladungsträger.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bewegen sich Ladungsträger senkrecht oder schräg zu einem Magnetfeld, so wirkt eine Lorentzkraft auf die Ladungsträger.
  • Die Kraftrichtung kann mit der Drei-Finger-Regel bestimmt werden.
  • Die Lorentzkraft wirkt auch auf freie Ladungsträger.

Zum Artikel Zu den Aufgaben

BROWNsche Bewegung und Innere Energie

Grundwissen

  • Die Atome eines Körpers sind auch ohne Krafteinwirkung von außen immer in Bewegung.
  • Einen Festkörper kannst du dir als Feder-Kugel-Modell vorstellen.
  • Die Summe aller kinetischen und potentiellen Energien der Atome eines Körpers wird als innere Energie bezeichnet.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Atome eines Körpers sind auch ohne Krafteinwirkung von außen immer in Bewegung.
  • Einen Festkörper kannst du dir als Feder-Kugel-Modell vorstellen.
  • Die Summe aller kinetischen und potentiellen Energien der Atome eines Körpers wird als innere Energie bezeichnet.

Zum Artikel Zu den Aufgaben

Phasenübergänge

Grundwissen

  • Phasenübergänge sind zwischen allen Zuständen (fest. flüssig, gasförmig) möglich.
  • Bei Phasenübergängen muss Energie hinzugefügt werden bzw. wird Energie frei. Die Temperatur verändert sich dabei zunächst nicht.
  • Bei den Phasenübergängen verändern sich die Bindungen zwischen den Teilchen. Die potentielle Energie (Teil der inneren Energie) ändert sich hierbei

Zum Artikel Zu den Aufgaben
Grundwissen

  • Phasenübergänge sind zwischen allen Zuständen (fest. flüssig, gasförmig) möglich.
  • Bei Phasenübergängen muss Energie hinzugefügt werden bzw. wird Energie frei. Die Temperatur verändert sich dabei zunächst nicht.
  • Bei den Phasenübergängen verändern sich die Bindungen zwischen den Teilchen. Die potentielle Energie (Teil der inneren Energie) ändert sich hierbei

Zum Artikel Zu den Aufgaben

Stehende Wellen - Entstehung

Grundwissen

  • Stehende Wellen können bei Überlagerung von zwei Wellen gleicher Frequenz und gleicher Amplitude entstehen.
  • Bei stehenden Wellen bilden sich Knoten (keine Auslenkung) und Bäuche (maximale Auslenkung im Vergleich zur Umgebung) aus.
  • Der Abstand zwischen zwei Knoten bzw. Bäuchen beträgt \(\frac{\lambda}{2}\) der sich überlagernden Wellen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Stehende Wellen können bei Überlagerung von zwei Wellen gleicher Frequenz und gleicher Amplitude entstehen.
  • Bei stehenden Wellen bilden sich Knoten (keine Auslenkung) und Bäuche (maximale Auslenkung im Vergleich zur Umgebung) aus.
  • Der Abstand zwischen zwei Knoten bzw. Bäuchen beträgt \(\frac{\lambda}{2}\) der sich überlagernden Wellen.

Zum Artikel Zu den Aufgaben

Potenzschreibweise

Grundwissen

  • Sehr große und sehr kleine Zahlen kannst du mithilfe von Zehnerpotenzen übersichtlich darstellen.
  • Beispiele: \(13000000=1{,}3\cdot 10^7\) und \(0{,}0000123=1{,}23\cdot 10^{-5}\)

Zum Artikel
Grundwissen

  • Sehr große und sehr kleine Zahlen kannst du mithilfe von Zehnerpotenzen übersichtlich darstellen.
  • Beispiele: \(13000000=1{,}3\cdot 10^7\) und \(0{,}0000123=1{,}23\cdot 10^{-5}\)

Zum Artikel Zu den Aufgaben

Direkte Proportionalität

Grundwissen

  • Bei zwei zueinander direkt proportionalen Größen gehört zum Doppelten, Dreifachen, . . . n-fachen der Größe \(x\) das Doppelte, Dreifache, . . .n-fache der Größe \(y\).
  • Zwei zueinander direkt proportionale Größen sind quotientengleich. Den Quotienten \(\frac{y}{x}\) nennt man die Proportionalitätskonstante (bzw. den Proportionalitätsfaktor).
  • Sind zwei Größen zueinander direkt proportional, so ergibt ihre Darstellung in einem Diagramm eine Halbgerade durch den Ursprung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei zwei zueinander direkt proportionalen Größen gehört zum Doppelten, Dreifachen, . . . n-fachen der Größe \(x\) das Doppelte, Dreifache, . . .n-fache der Größe \(y\).
  • Zwei zueinander direkt proportionale Größen sind quotientengleich. Den Quotienten \(\frac{y}{x}\) nennt man die Proportionalitätskonstante (bzw. den Proportionalitätsfaktor).
  • Sind zwei Größen zueinander direkt proportional, so ergibt ihre Darstellung in einem Diagramm eine Halbgerade durch den Ursprung.

Zum Artikel Zu den Aufgaben

Genauigkeitsangaben und gültige Ziffern

Grundwissen

  • (Gemessene) physikalische Größen sind in der Regel mit Unsicherheit verbunden.
  • Die Zahl der gültigen Ziffern ergibt sich durch Zählung aller Stellen ab der ersten von Null verschiedenen Ziffer nach rechts.
  • Die Größe mit den wenigsten gültigen Ziffern bestimmt mit ihrer Anzahl an gültigen Ziffern auch die Anzahl der gültigen Ziffern bei der Berechnung eines Produktes oder Quotienten aus mehreren Größen.
  • Manchmal muss du Zehnerpotenzen verwenden, um die Anzahl der gültigen Ziffern korrekt anzugeben.

Zum Artikel
Grundwissen

  • (Gemessene) physikalische Größen sind in der Regel mit Unsicherheit verbunden.
  • Die Zahl der gültigen Ziffern ergibt sich durch Zählung aller Stellen ab der ersten von Null verschiedenen Ziffer nach rechts.
  • Die Größe mit den wenigsten gültigen Ziffern bestimmt mit ihrer Anzahl an gültigen Ziffern auch die Anzahl der gültigen Ziffern bei der Berechnung eines Produktes oder Quotienten aus mehreren Größen.
  • Manchmal muss du Zehnerpotenzen verwenden, um die Anzahl der gültigen Ziffern korrekt anzugeben.

Zum Artikel Zu den Aufgaben

Modell der Elementarmagnete

Grundwissen

  • Modellhaft können wir ein Magneten immer weiter in Magnete zerteilen, bis wir kleinste, unteilbare Elementarmagnete haben. Auch diese haben jeweils Nord- und Südpol.
  • Mit Hilfe des Modells der Elementarmagnete kannst du viele Phänomene erklären: das Magnetisieren von Eisen, das  Entmagnetisieren durch Erhitzen und das Entmagnetisieren durch Erschütterung.

Zum Artikel
Grundwissen

  • Modellhaft können wir ein Magneten immer weiter in Magnete zerteilen, bis wir kleinste, unteilbare Elementarmagnete haben. Auch diese haben jeweils Nord- und Südpol.
  • Mit Hilfe des Modells der Elementarmagnete kannst du viele Phänomene erklären: das Magnetisieren von Eisen, das  Entmagnetisieren durch Erhitzen und das Entmagnetisieren durch Erschütterung.

Zum Artikel Zu den Aufgaben

Energieformen

Grundwissen

  • Energie kann in unterschiedlichen Formen vorliegen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Energie kann in unterschiedlichen Formen vorliegen.

Zum Artikel Zu den Aufgaben

Grundbegriffe zu Periodischen Bewegungen und Schwingungen

Grundwissen

  • Bei einer periodischen Bewegung hat ein Körper nach einer Periodendauer \(T\) wieder den gleichen Bewegungszustand.
  • Für die Frequenz einer periodischen Bewegung gilt \(f=\frac{1}{T}\).
  • Die Amplitude einer Schwingung ist der Betrag des Maximalwerts der Auslenkung aus der Ruhelage.

Zum Artikel
Grundwissen

  • Bei einer periodischen Bewegung hat ein Körper nach einer Periodendauer \(T\) wieder den gleichen Bewegungszustand.
  • Für die Frequenz einer periodischen Bewegung gilt \(f=\frac{1}{T}\).
  • Die Amplitude einer Schwingung ist der Betrag des Maximalwerts der Auslenkung aus der Ruhelage.

Zum Artikel Zu den Aufgaben