Direkt zum Inhalt
Suchergebnisse 181 - 210 von 2647

Energiezustände von Atomen - Lage des Grundzustands (Standbild)

Download ( Simulation )

Die Abildung zeigt die Lage der Energie des Grundzustands auf der Energieachse eines Atoms.

Zum Download
Download ( Simulation )

Die Abildung zeigt die Lage der Energie des Grundzustands auf der Energieachse eines Atoms.

Zum Download

Energiezustände von Atomen - Termschema (Animation)

Download ( Simulation )

Die Animation zeigt das Termschema eines Atoms in einer abstrakten Darstellung des Atoms.

Zum Download
Download ( Simulation )

Die Animation zeigt das Termschema eines Atoms in einer abstrakten Darstellung des Atoms.

Zum Download

MACH-ZEHNDER-Interferometer (Simulation MintApps)

Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download
Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download

Interferenzfähigkeit von Photonen im Quantenradierer

Grundwissen

Quantenobjekte besitzen sowohl Welleneigenschaften wie Interferenzfähigkeit, als auch Teilcheneigenschaften wie Unteilbarkeit. Dies kann am Mach-Zehnder-Interferometer verdeutlicht werden:

  • Ob im Interferometer Interferenz auftritt, hängt davon ab, ob der Lichtweg eines Photons eindeutig bestimmbar ist.
  • Wenn einem Photon im Interferometer ein eindeutiger Weg zugeordnet werden kann, tritt keine Interferenz auf.
  • Wenn einem Photon im Interferometer mehrere Wege zugeordnet werden können, tritt Interferenz auf.
  • Die Zuordnung von Lichtwegen kann auch hinter dem Interferometer noch rückgängig gemacht werden ("Quantenradierer")

Zum Artikel Zu den Aufgaben
Grundwissen

Quantenobjekte besitzen sowohl Welleneigenschaften wie Interferenzfähigkeit, als auch Teilcheneigenschaften wie Unteilbarkeit. Dies kann am Mach-Zehnder-Interferometer verdeutlicht werden:

  • Ob im Interferometer Interferenz auftritt, hängt davon ab, ob der Lichtweg eines Photons eindeutig bestimmbar ist.
  • Wenn einem Photon im Interferometer ein eindeutiger Weg zugeordnet werden kann, tritt keine Interferenz auf.
  • Wenn einem Photon im Interferometer mehrere Wege zugeordnet werden können, tritt Interferenz auf.
  • Die Zuordnung von Lichtwegen kann auch hinter dem Interferometer noch rückgängig gemacht werden ("Quantenradierer")

Zum Artikel Zu den Aufgaben

Magnetische Flussdichte und die Maßeinheit Tesla

Grundwissen

  • Befindet sich ein gerader Leiter der Länge \(l\), der von einem Strom der Stärke \(I\) durchflossen wird, senkrecht zu den Feldlinien in einem magnetischen Feld, und wirkt auf diesen Leiter eine magnetische Kraft vom Betrag \(F_{\rm{mag}}\), dann definieren wir die magnetische Flussdichte \(B\) des magnetischen Feldes am Ort des Leiters durch \(B := \frac{F_{\rm{mag}}}{l \cdot I}\).
  • Die magnetische Flussdichte \(B\) ist ein Maß für "die Stärke" eines magnetischen Feldes.
  • Das Formelzeichen für die magnetische Flussdichte ist \(B\), die Maßeinheit der magnetischen Flussdichte ist \(1\,\rm{T}\) (Tesla).

Zum Artikel
Grundwissen

  • Befindet sich ein gerader Leiter der Länge \(l\), der von einem Strom der Stärke \(I\) durchflossen wird, senkrecht zu den Feldlinien in einem magnetischen Feld, und wirkt auf diesen Leiter eine magnetische Kraft vom Betrag \(F_{\rm{mag}}\), dann definieren wir die magnetische Flussdichte \(B\) des magnetischen Feldes am Ort des Leiters durch \(B := \frac{F_{\rm{mag}}}{l \cdot I}\).
  • Die magnetische Flussdichte \(B\) ist ein Maß für "die Stärke" eines magnetischen Feldes.
  • Das Formelzeichen für die magnetische Flussdichte ist \(B\), die Maßeinheit der magnetischen Flussdichte ist \(1\,\rm{T}\) (Tesla).

Zum Artikel Zu den Aufgaben

Magnetische Flussdichte in der Umgebung eines geraden Leiters - Formelumstellung (Animation)

Download ( Simulation )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der magnetischen Flussdichte in der Umgebung eines geraden Leiters nach den…

Zum Download
Download ( Simulation )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der magnetischen Flussdichte in der Umgebung eines geraden Leiters nach den…

Zum Download

Magnetische Flussdichte in der Mittelebene von HELMHOLTZ-Spulen - Formelumstellung (Animation)

Download ( Simulation )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der magnetischen Flussdichte in der Mittelebene von HELMHOLTZ-Spulen nach den…

Zum Download
Download ( Simulation )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der magnetischen Flussdichte in der Mittelebene von HELMHOLTZ-Spulen nach den…

Zum Download

Linearbeschleuniger (Simulation MintApps)

Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download
Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download

Schaltertypen - Taster (Animation)

Download ( Simulation )

Die Animation zeigt das Schaltzeichen und die Funktionsweise eines Tasters.

Zum Download
Download ( Simulation )

Die Animation zeigt das Schaltzeichen und die Funktionsweise eines Tasters.

Zum Download

Freier Fall - Grundwissen (Animation)

Download ( Animationen )

Die Animation zeigt einen Freien Fall (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und verschiedene Diagramme.

Zum Download
Download ( Animationen )

Die Animation zeigt einen Freien Fall (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und verschiedene Diagramme.

Zum Download

Wurf nach unten - Grundwissen (Animation)

Download ( Animationen )

Die Animation zeigt einen Wurf nach unten (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und verschiedene…

Zum Download
Download ( Animationen )

Die Animation zeigt einen Wurf nach unten (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und verschiedene…

Zum Download

Wurf nach oben ohne Anfangshöhe - Grundwissen (Animation)

Download ( Animationen )

Die Animation zeigt einen Wurf nach oben ohne Anfangshöhe (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und…

Zum Download
Download ( Animationen )

Die Animation zeigt einen Wurf nach oben ohne Anfangshöhe (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und…

Zum Download

Wurf nach oben mit Anfangshöhe - Grundwissen (Animation)

Download ( Animationen )

Die Animation zeigt einen Wurf nach oben mit Anfangshöhe (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und…

Zum Download
Download ( Animationen )

Die Animation zeigt einen Wurf nach oben mit Anfangshöhe (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und…

Zum Download

Wurf nach oben mit Anfangshöhe

Grundwissen

  • Als Wurf nach oben mit Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}} + h\).
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt{{v_{y,0}}^2 + 2 \cdot g \cdot h}}{g}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Wurf nach oben mit Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}} + h\).
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt{{v_{y,0}}^2 + 2 \cdot g \cdot h}}{g}\).

Zum Artikel Zu den Aufgaben

Schräger Wurf nach unten (Animation)

Download ( Animationen )

Die Animation zeigt einen schrägen Wurf nach unten (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und…

Zum Download
Download ( Animationen )

Die Animation zeigt einen schrägen Wurf nach unten (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und…

Zum Download

Schräger Wurf nach unten

Grundwissen

  • Als Schrägen Wurf nach unten bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer schräg nach unten gerichteten Anfangsgeschwindigkeit \(\vec v_0\) "geworfen" wird.
  • Der Körper führt dann in horizontaler Richtung eine gleichförmige Bewegung und in vertikaler Richtung eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt {{v_{y,0}}^2 + 2 \cdot g \cdot h} }{g}\). Beachte: \(v_{y,0}<0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Schrägen Wurf nach unten bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer schräg nach unten gerichteten Anfangsgeschwindigkeit \(\vec v_0\) "geworfen" wird.
  • Der Körper führt dann in horizontaler Richtung eine gleichförmige Bewegung und in vertikaler Richtung eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt {{v_{y,0}}^2 + 2 \cdot g \cdot h} }{g}\). Beachte: \(v_{y,0}<0\).

Zum Artikel Zu den Aufgaben

Induktion durch Änderung der magnetischen Flussdichte - Formelumstellung (Animation)

Download ( Simulation )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der Induktionsspannung bei Änderung der magnetischen Flussdichte nach den fünf…

Zum Download
Download ( Simulation )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der Induktionsspannung bei Änderung der magnetischen Flussdichte nach den fünf…

Zum Download

Induktion durch Änderung des Flächeninhalts - Formelumstellung (Animation)

Download ( Simulation )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der Induktionsspannung bei Änderung des Flächeninhalts nach den fünf in der…

Zum Download
Download ( Simulation )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der Induktionsspannung bei Änderung des Flächeninhalts nach den fünf in der…

Zum Download

Gültige Ziffern mit Zehnerpotenzen

Grundwissen

  • Manchmal ist die Angabe der Lösung mit der richtigen Anzahl der gültigen Ziffern nicht direkt möglich.
  • Die Umwandlung in eine größere Einheit ist eine Lösungsmöglichkeit.
  • Durch den Einsatz von Zehnerpotenzen kannst du die Anzahl der gültigen Ziffern immer richtig angeben.

Zum Artikel
Grundwissen

  • Manchmal ist die Angabe der Lösung mit der richtigen Anzahl der gültigen Ziffern nicht direkt möglich.
  • Die Umwandlung in eine größere Einheit ist eine Lösungsmöglichkeit.
  • Durch den Einsatz von Zehnerpotenzen kannst du die Anzahl der gültigen Ziffern immer richtig angeben.

Zum Artikel Zu den Aufgaben

Treibhauseffekt (Simulation)

Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von: PhET Interactive Simulations University of Colorado Boulder https://phet.colorado.edu Informationen…

Zum Download
Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von: PhET Interactive Simulations University of Colorado Boulder https://phet.colorado.edu Informationen…

Zum Download

Mein Sonnensystem (Simulation von PhET)

Download ( Simulation )

Simulation by PhET Interactive Simulations, University of Colorado Boulder, licensed under CC-BY-4.0 (https://phet.colorado.edu).

Zum Download
Download ( Simulation )

Simulation by PhET Interactive Simulations, University of Colorado Boulder, licensed under CC-BY-4.0 (https://phet.colorado.edu).

Zum Download

Elektromagnetischer Schwingkreis stark gedämpft - aperiodischer Grenzfall (Theorie)

Ausblick

  • Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
  • Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\) und \(\delta = \frac{R}{2 \cdot L}\)

Zum Artikel
Ausblick

  • Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
  • Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\) und \(\delta = \frac{R}{2 \cdot L}\)

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis stark gedämpft - Kriechfall (Theorie)

Ausblick

  • Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
  • Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{1}{L \cdot C}}\) und \(\delta = \frac{R}{2 \cdot L}\)

Zum Artikel
Ausblick

  • Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
  • Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{1}{L \cdot C}}\) und \(\delta = \frac{R}{2 \cdot L}\)

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis ungedämpft (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der ungedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der ungedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Federpendel stark gedämpft - aperiodischer Grenzfall (Theorie)

Ausblick

  • Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel
Ausblick

  • Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel Zu den Aufgaben

Federpendel stark gedämpft - Kriechfall (Theorie)

Ausblick

  • Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{D}{m}}\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel
Ausblick

  • Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{D}{m}}\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel Zu den Aufgaben

Fallschirmsprung (Simulation MintApps)

Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download
Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download

Elektromagnetischer Schwingkreis gedämpft (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der gedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der gedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Aufladen eines Kondensators (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Aufladen eines Kondensators mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Aufladen eines Kondensators mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Entladen eines Kondensators (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Entladen eines Kondensators mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Entladen eines Kondensators mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben