Direkt zum Inhalt
Suchergebnisse 31 - 60 von 534

Stehende Wellen - Typen

Grundwissen

  • Stehende Wellen mit zwei festen Enden beschreiben u.a. das Schwingen von Saiten.
  • Stehende Wellen mit zwei losen Enden beschreiben u.a. die Tonerzeugung von Blockflöten und offenen Orgelpfeifen
  • Stehende Wellen mit einem festen und einem losen Ende beschreiben u.a. die Tonerzeugung von Panflöten und gedeckten Orgelpfeifen

Zum Artikel Zu den Aufgaben
Grundwissen

  • Stehende Wellen mit zwei festen Enden beschreiben u.a. das Schwingen von Saiten.
  • Stehende Wellen mit zwei losen Enden beschreiben u.a. die Tonerzeugung von Blockflöten und offenen Orgelpfeifen
  • Stehende Wellen mit einem festen und einem losen Ende beschreiben u.a. die Tonerzeugung von Panflöten und gedeckten Orgelpfeifen

Zum Artikel Zu den Aufgaben

Reflexion mit der Slinky-Feder

Versuche

  • Mit einer Slinky-Feder kannst du die Reflexion von Transversal- und von Longitudinalwellen an festen und an losen Enden demonstrieren.

Zum Artikel
Versuche

  • Mit einer Slinky-Feder kannst du die Reflexion von Transversal- und von Longitudinalwellen an festen und an losen Enden demonstrieren.

Zum Artikel Zu den Aufgaben

Transmission und Reflexion

Grundwissen

  • Beim Übergang einer Welle vom dünneren zum dichteren Medium läuft die ursprüngliche Welle mit kleinerer Amplitude und kleinerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei wird ein Wellenberg zu einem Wellental und ein Wellental zu einem Wellenberg (Reflexion am festen Ende, Phasensprung von \(\pi\)).
  • Beim Übergang einer Welle vom dichteren zum dünneren Medium  läuft die ursprüngliche Welle mit veränderter Amplitude und größerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei bleibt ein Wellenberg ein Wellenberg und ein  Wellental ein Wellental (Reflexion am losen Ende, kein Phasensprung).

Zum Artikel
Grundwissen

  • Beim Übergang einer Welle vom dünneren zum dichteren Medium läuft die ursprüngliche Welle mit kleinerer Amplitude und kleinerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei wird ein Wellenberg zu einem Wellental und ein Wellental zu einem Wellenberg (Reflexion am festen Ende, Phasensprung von \(\pi\)).
  • Beim Übergang einer Welle vom dichteren zum dünneren Medium  läuft die ursprüngliche Welle mit veränderter Amplitude und größerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei bleibt ein Wellenberg ein Wellenberg und ein  Wellental ein Wellental (Reflexion am losen Ende, kein Phasensprung).

Zum Artikel Zu den Aufgaben

Wasserparabel (IBE der FU Berlin)

Versuche
Versuche

Wurf nach oben mit Anfangshöhe

Grundwissen

  • Als Wurf nach oben mit Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}} + h\).
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt{{v_{y,0}}^2 + 2 \cdot g \cdot h}}{g}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Wurf nach oben mit Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}} + h\).
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt{{v_{y,0}}^2 + 2 \cdot g \cdot h}}{g}\).

Zum Artikel Zu den Aufgaben

Schräger Wurf nach unten

Grundwissen

  • Als Schrägen Wurf nach unten bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer schräg nach unten gerichteten Anfangsgeschwindigkeit \(\vec v_0\) "geworfen" wird.
  • Der Körper führt dann in horizontaler Richtung eine gleichförmige Bewegung und in vertikaler Richtung eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt {{v_{y,0}}^2 + 2 \cdot g \cdot h} }{g}\). Beachte: \(v_{y,0}<0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Schrägen Wurf nach unten bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer schräg nach unten gerichteten Anfangsgeschwindigkeit \(\vec v_0\) "geworfen" wird.
  • Der Körper führt dann in horizontaler Richtung eine gleichförmige Bewegung und in vertikaler Richtung eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt {{v_{y,0}}^2 + 2 \cdot g \cdot h} }{g}\). Beachte: \(v_{y,0}<0\).

Zum Artikel Zu den Aufgaben

Gleichförmige Bewegung auf der Luftkissenschiene

Versuche

  • Der Versuch soll den Zusammenhang zwischen Durchschnittsgeschwindigkeit und Momentangeschwindigkeit bei einer gleichförmigen Bewegung verdeutlichen

Zum Artikel Zu den Aufgaben
Versuche

  • Der Versuch soll den Zusammenhang zwischen Durchschnittsgeschwindigkeit und Momentangeschwindigkeit bei einer gleichförmigen Bewegung verdeutlichen

Zum Artikel Zu den Aufgaben

Federpendel stark gedämpft - aperiodischer Grenzfall (Theorie)

Ausblick

  • Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel
Ausblick

  • Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel Zu den Aufgaben

Federpendel stark gedämpft - Kriechfall (Theorie)

Ausblick

  • Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{D}{m}}\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel
Ausblick

  • Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{D}{m}}\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel Zu den Aufgaben

Fall mit STOKES-Reibung (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der Fall eines Körpers mit STOKES-Reibung mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der Fall eines Körpers mit STOKES-Reibung mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Fall mit NEWTON-Reibung (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der Fall eines Körpers mit NEWTON-Reibung mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der Fall eines Körpers mit NEWTON-Reibung mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Gleichmäßig beschleunigte Bewegung auf der Luftkissenschiene

Versuche

  • Der Versuch soll zwei Verschiedene Methoden zur Ermittlung der Beschleunigung einer gleichmäßig beschleunigten Bewegung ermöglichen

Zum Artikel
Versuche

  • Der Versuch soll zwei Verschiedene Methoden zur Ermittlung der Beschleunigung einer gleichmäßig beschleunigten Bewegung ermöglichen

Zum Artikel Zu den Aufgaben

Betrag der Zentripetalbeschleunigung (Smartphone-Experiment mit phyphox)

Versuche

  • Untersuchung/Bestätigung der Abhängigkeit des Betrags der Zentripetalbeschleunigung von der Winkelgeschwindigkeit und dem Bahnradius.
  • Möglichkeiten für Experimente mit Alltagsgegenständen aufzeigen.

Zum Artikel
Versuche

  • Untersuchung/Bestätigung der Abhängigkeit des Betrags der Zentripetalbeschleunigung von der Winkelgeschwindigkeit und dem Bahnradius.
  • Möglichkeiten für Experimente mit Alltagsgegenständen aufzeigen.

Zum Artikel Zu den Aufgaben

Schräger Wurf (Simulation mit GeoGebra)

Versuche
Versuche

Federschwingung mit Ultraschallsensor

Versuche

  • Bewegungsdiagramm von Federschwingungen aufnehmen
  • Zusammenhänge zwischen Zeit-Orts-, Zeit-Geschwindigkeits- und Zeit-Beschleunigungs-Diagrammen veranschaulichen

Zum Artikel
Versuche

  • Bewegungsdiagramm von Federschwingungen aufnehmen
  • Zusammenhänge zwischen Zeit-Orts-, Zeit-Geschwindigkeits- und Zeit-Beschleunigungs-Diagrammen veranschaulichen

Zum Artikel Zu den Aufgaben

Wechselwirkung ungleich Gleichgewicht

Grundwissen

  • Wechselwirkungskräfte und Kräftegleichgewicht dürfen nicht verwechselt werden.
  • Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an, Kräfte im Gleichgewicht an einem einzigen Körper.
  • Wechselwirkungskräfte treten immer auf, ein Kräftegleichgewicht kann nur vorliegen, muss aber nicht.

Zum Artikel
Grundwissen

  • Wechselwirkungskräfte und Kräftegleichgewicht dürfen nicht verwechselt werden.
  • Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an, Kräfte im Gleichgewicht an einem einzigen Körper.
  • Wechselwirkungskräfte treten immer auf, ein Kräftegleichgewicht kann nur vorliegen, muss aber nicht.

Zum Artikel Zu den Aufgaben

Wellen

Grundwissen

  • Wellen treten in verschiedensten Formen auf: Wasserwellen, Schallwellen, elektromagnetische Wellen
  • Eine Welle ist eine räumliche und zeitliche Zustandsänderung physikalischer Größen, die meist nach bestimmten periodischen Gesetzmäßigkeiten erfolgt.
  • Die Ausbreitung einer Welle ist ein Energietransport, aber kein Materialtransport.

Zum Artikel
Grundwissen

  • Wellen treten in verschiedensten Formen auf: Wasserwellen, Schallwellen, elektromagnetische Wellen
  • Eine Welle ist eine räumliche und zeitliche Zustandsänderung physikalischer Größen, die meist nach bestimmten periodischen Gesetzmäßigkeiten erfolgt.
  • Die Ausbreitung einer Welle ist ein Energietransport, aber kein Materialtransport.

Zum Artikel Zu den Aufgaben

Erklärung des Fliegens

Ausblick
Ausblick

Ablesen von Kraftmessern

Grundwissen

  • Verschiedene Kraftmesser haben einen unterschiedlichen Vollausschlag, z.B. 1N, 2,5N oder 5N.
  • Beachte beim Ablesen von Kraftmessern, welche Kraft ein farblich markierter Abschnitt darstellt. 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Verschiedene Kraftmesser haben einen unterschiedlichen Vollausschlag, z.B. 1N, 2,5N oder 5N.
  • Beachte beim Ablesen von Kraftmessern, welche Kraft ein farblich markierter Abschnitt darstellt. 

Zum Artikel Zu den Aufgaben

Federpendel

Grundwissen

  • Ein horizontal bewegliches Federpendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega} = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein horizontal bewegliches Federpendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega} = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung.

Zum Artikel Zu den Aufgaben

Charakterisierung der gleichförmigen Bewegung

Grundwissen

  • Bei gleichförmiger Bewegung wird in doppelter Zeit die doppelte Strecke zurückgelegt usw.
  • Der Zeit-Weg-Graph einer gleichförmigen Bewegung ist eine Ursprungsgerade
  • Es gilt \(s=v\cdot t\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei gleichförmiger Bewegung wird in doppelter Zeit die doppelte Strecke zurückgelegt usw.
  • Der Zeit-Weg-Graph einer gleichförmigen Bewegung ist eine Ursprungsgerade
  • Es gilt \(s=v\cdot t\)

Zum Artikel Zu den Aufgaben

Geschwindigkeit bei gleichförmiger Bewegung

Grundwissen

  • Die Geschwindigkeit einer gleichförmigen Bewegung ist konstant.
  • Für die Geschwindigkeit einer gleichförmigen Bewegung gilt \(v=\frac{s}{t}\)
  • Die Einheit der Geschwindigkeit ist \([v]=1\,\rm{\frac{m}{s}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Geschwindigkeit einer gleichförmigen Bewegung ist konstant.
  • Für die Geschwindigkeit einer gleichförmigen Bewegung gilt \(v=\frac{s}{t}\)
  • Die Einheit der Geschwindigkeit ist \([v]=1\,\rm{\frac{m}{s}}\)

Zum Artikel Zu den Aufgaben

Mittlere Geschwindigkeit

Grundwissen

  • Bei nicht gleichförmigen Bewegungen kann man die mittlere Geschwindigkeit (Durchschnittsgeschwindigkeit) angeben.
  • Für die mittlere Geschwindigkeit \(\bar{v}\) in einer Zeitspanne \(t\) gilt: \(\bar{v}=\frac{s}{t}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei nicht gleichförmigen Bewegungen kann man die mittlere Geschwindigkeit (Durchschnittsgeschwindigkeit) angeben.
  • Für die mittlere Geschwindigkeit \(\bar{v}\) in einer Zeitspanne \(t\) gilt: \(\bar{v}=\frac{s}{t}\)

Zum Artikel Zu den Aufgaben

Beschleunigte Bewegung

Grundwissen

  • Bei einer beschleunigten Bewegung ändert sich die Geschwindigkeit des Körpers

Zum Artikel
Grundwissen

  • Bei einer beschleunigten Bewegung ändert sich die Geschwindigkeit des Körpers

Zum Artikel Zu den Aufgaben

Charakterisierung der gleichmäßig beschleunigten Bewegung

Grundwissen

  • Die Zeit-Weg-Funktion einer gleichmäßig beschleunigten Bewegung ist eine quadratische Funktion, der Zeit-Weg-Graph also eine Parabel und eine Verdopplung der Zeit führt zu einer Vervierfachung des zurückgelegten Weges.
  • Die Zeit-Geschwindigkeits-Funktion einer gleichmäßig beschleunigten Bewegung ist eine lineare Funktion, der Zeit-Geschwindigkeits-Graph also eine Gerade und eine Verdopplung der Zeit führt zu einer Verdopplung der Geschwindigkeit.

Zum Artikel
Grundwissen

  • Die Zeit-Weg-Funktion einer gleichmäßig beschleunigten Bewegung ist eine quadratische Funktion, der Zeit-Weg-Graph also eine Parabel und eine Verdopplung der Zeit führt zu einer Vervierfachung des zurückgelegten Weges.
  • Die Zeit-Geschwindigkeits-Funktion einer gleichmäßig beschleunigten Bewegung ist eine lineare Funktion, der Zeit-Geschwindigkeits-Graph also eine Gerade und eine Verdopplung der Zeit führt zu einer Verdopplung der Geschwindigkeit.

Zum Artikel Zu den Aufgaben

Beschleunigung bei gleichmäßig beschleunigter Bewegung

Grundwissen

  • Je größer der Öffnungsfaktor der Parabel im Zeit-Weg-Graph, desto größer ist die Beschleunigung des Körpers.
  • Je steiler der Zeit-Geschwindigkeits-Graph, desto größer ist die Beschleunigung des Körpers.
  • Für die Beschleunigung \(a\) aus der Ruhe heraus gilt: \(a=\frac{v}{t}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Je größer der Öffnungsfaktor der Parabel im Zeit-Weg-Graph, desto größer ist die Beschleunigung des Körpers.
  • Je steiler der Zeit-Geschwindigkeits-Graph, desto größer ist die Beschleunigung des Körpers.
  • Für die Beschleunigung \(a\) aus der Ruhe heraus gilt: \(a=\frac{v}{t}\)

Zum Artikel Zu den Aufgaben

Mittlere Beschleunigung

Grundwissen

  • Die mittlere Beschleunigung \(\bar{a}\) (Durchschnittsbeschleunigung) ermöglicht den Vergleich von nicht gleichmäßigen Beschleunigungen.
  • Wenn die Bewegung bei \(t=0\) aus der Ruhe beginnt, gilt für die mittlere Beschleunigung \(\bar{a}=\frac{v}{t}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die mittlere Beschleunigung \(\bar{a}\) (Durchschnittsbeschleunigung) ermöglicht den Vergleich von nicht gleichmäßigen Beschleunigungen.
  • Wenn die Bewegung bei \(t=0\) aus der Ruhe beginnt, gilt für die mittlere Beschleunigung \(\bar{a}=\frac{v}{t}\)

Zum Artikel Zu den Aufgaben

Raketenphysik

Grundwissen

  • Der Antrieb von Raketen beruht auf dem Rückstoßprinzip beim Ausströmen des Treibstoffs aus der Rakete.
  • Unter bestimmten Annahmen kann man die Geschwindigkeit und die Höhe der Rakete nach dem Ausströmen des gesamten Treibstoffs berechnen.
  • Beide Größen sind unter anderem von der Ausströmgeschwindigkeit des Treibstoffs und dem Massenverhältnis von Rakete mit zu Rakete ohne Treibstoff abhängig.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Antrieb von Raketen beruht auf dem Rückstoßprinzip beim Ausströmen des Treibstoffs aus der Rakete.
  • Unter bestimmten Annahmen kann man die Geschwindigkeit und die Höhe der Rakete nach dem Ausströmen des gesamten Treibstoffs berechnen.
  • Beide Größen sind unter anderem von der Ausströmgeschwindigkeit des Treibstoffs und dem Massenverhältnis von Rakete mit zu Rakete ohne Treibstoff abhängig.

Zum Artikel Zu den Aufgaben

Deduktion zum Schweredruck

Versuche
Versuche

Bewegungsgesetze der gleichmäßig beschleunigten Bewegung

Grundwissen

  • Bei einer gleichmäßig beschleunigten Bewegung ist die Beschleunigung \(a\neq 0\).
  • Das Zeit-Geschwindigkeit-Gesetz lautet bei Beschleunigung aus der Ruhe heraus \(v=a\cdot t\).
  • Das Zeit-Ort-Gesetz lautet bei Beschleunigung aus der Ruhe heraus \(s=\frac{1}{2}a\cdot t^2\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einer gleichmäßig beschleunigten Bewegung ist die Beschleunigung \(a\neq 0\).
  • Das Zeit-Geschwindigkeit-Gesetz lautet bei Beschleunigung aus der Ruhe heraus \(v=a\cdot t\).
  • Das Zeit-Ort-Gesetz lautet bei Beschleunigung aus der Ruhe heraus \(s=\frac{1}{2}a\cdot t^2\).

Zum Artikel Zu den Aufgaben