Direkt zum Inhalt
Suchergebnisse 211 - 240 von 308

Folgen des Treibhauseffekts

Ausblick
Ausblick

FEYNMAN zum Energiebegriff

Ausblick
Ausblick

Erklärung von Reflexion und Brechung durch das Prinzip von HUYGENS

Ausblick
Ausblick

Beispiele für Geschwindigkeiten

Ausblick
Ausblick

Fahrtenschreiber Tachograph

Ausblick
Ausblick

Pathfinder-Mission zum Mars

Ausblick
Ausblick

Bremsen in der Kurve

Ausblick
Ausblick

Motorrad in der Kurve

Ausblick
Ausblick

Herstellung von Transistoren mittels Planartechnik

Ausblick
Ausblick

Einschalten eines Stromkreises mit einer Spule (Theorie)

Ausblick
Ausblick

Ausschalten eines Stromkreises mit einer Spule (Theorie)

Ausblick
Ausblick

Aufladen eines Kondensators (Theorie)

Ausblick

  • Der zeitliche Verlauf der Ladung auf einem Kondensator der Kapazität \(C\) beim Aufladen durch eine elektrische Quelle mit der Nennspannung \(U_0\) über einen Widerstand der Größe \(R\) wird beschrieben durch die inhomogene Differentialgleichung 1. Ordnung \(\dot Q(t) + \frac{1}{{R \cdot C}} \cdot Q(t) = \frac{{\left| {{U_0}} \right|}}{R}\) mit \(Q(0{\rm{s}}) = 0\).
  • Diese Differentialgleichung wird gelöst durch die Funktion \(Q(t) = C \cdot \left| {{U_0}} \right| \cdot \left( {1 - {e^{ - \frac{1}{{R \cdot C}} \cdot t}}} \right)\). Die Ladung auf dem Kondensator steigt also während des Aufladevorgangs exponentiell an.
  • Für die Halbwertszeit gilt \({t_{\rm{H}}} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel
Ausblick

  • Der zeitliche Verlauf der Ladung auf einem Kondensator der Kapazität \(C\) beim Aufladen durch eine elektrische Quelle mit der Nennspannung \(U_0\) über einen Widerstand der Größe \(R\) wird beschrieben durch die inhomogene Differentialgleichung 1. Ordnung \(\dot Q(t) + \frac{1}{{R \cdot C}} \cdot Q(t) = \frac{{\left| {{U_0}} \right|}}{R}\) mit \(Q(0{\rm{s}}) = 0\).
  • Diese Differentialgleichung wird gelöst durch die Funktion \(Q(t) = C \cdot \left| {{U_0}} \right| \cdot \left( {1 - {e^{ - \frac{1}{{R \cdot C}} \cdot t}}} \right)\). Die Ladung auf dem Kondensator steigt also während des Aufladevorgangs exponentiell an.
  • Für die Halbwertszeit gilt \({t_{\rm{H}}} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel Zu den Aufgaben

Entladen eines Kondensators (Theorie)

Ausblick

  • Der zeitliche Verlauf der Ladung auf einem Kondensator der Kapazität \(C\) beim Entladen über einen Widerstand der Größe \(R\) wird beschrieben durch die homogene Differentialgleichung 1. Ordnung \(\dot Q(t) + \frac{1}{{R \cdot C}} \cdot Q(t) = 0\) mit \(Q(0{\rm{s}}) = C \cdot \left| {{U_0}} \right|\).
  • Diese Differentialgleichung wird gelöst durch die Funktion \(Q(t) = C \cdot \left| {{U_0}} \right| \cdot e^{ - \frac{1}{R \cdot C} \cdot t}\). Die Ladung auf dem Kondensator fällt also während des Entladevorgangs exponentiell ab.
  • Für die Halbwertszeit gilt \({t_{\rm{H}}} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel
Ausblick

  • Der zeitliche Verlauf der Ladung auf einem Kondensator der Kapazität \(C\) beim Entladen über einen Widerstand der Größe \(R\) wird beschrieben durch die homogene Differentialgleichung 1. Ordnung \(\dot Q(t) + \frac{1}{{R \cdot C}} \cdot Q(t) = 0\) mit \(Q(0{\rm{s}}) = C \cdot \left| {{U_0}} \right|\).
  • Diese Differentialgleichung wird gelöst durch die Funktion \(Q(t) = C \cdot \left| {{U_0}} \right| \cdot e^{ - \frac{1}{R \cdot C} \cdot t}\). Die Ladung auf dem Kondensator fällt also während des Entladevorgangs exponentiell ab.
  • Für die Halbwertszeit gilt \({t_{\rm{H}}} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel Zu den Aufgaben

Botafumeiro (Simulation)

Ausblick
Ausblick

Bremsen beim Fahrrad

Ausblick
Ausblick

Schaltung beim Fahrrad

Ausblick
Ausblick

Energieumsatz beim Fahrradfahren

Ausblick
Ausblick

Energie und Leistung beim Fahrradfahren

Ausblick
Ausblick

Reibungskräfte beim Fahrradfahren

Ausblick
Ausblick

Anstiege und Abfahrten beim Fahrradfahren

Ausblick
Ausblick

Anfahren und Abbremsen beim Fahrradfahren

Ausblick
Ausblick