Direkt zum Inhalt
Suchergebnisse 31 - 60 von 75

Video zum Flaschenzug

Versuche
Versuche

Auswerten eines Films zum freien Fall

Versuche
Versuche

Hebellabor (Simulation von PhET)

Versuche
Versuche

Kugel in rotierender Rinne

Versuche

  • Demonstration der Massenunabhängigkeit der Kugelposition
  • Ermittlung der Steighöhe \(h\) in Abhängigkeit von Winkelgeschwindigkeit und Geometrie der Rinne

Zum Artikel
Versuche

  • Demonstration der Massenunabhängigkeit der Kugelposition
  • Ermittlung der Steighöhe \(h\) in Abhängigkeit von Winkelgeschwindigkeit und Geometrie der Rinne

Zum Artikel Zu den Aufgaben

Rotierendes Wassergefäß

Versuche
Versuche

Fallröhre

Versuche

Mit diesem Versuch können wir nachweisen, dass an einem Ort alle Körper gleich zum Erdboden beschleunigen, wenn keine Reibungskräfte, sondern nur die Gewichtskraft auf die Körper wirkt.

Zum Artikel
Versuche

Mit diesem Versuch können wir nachweisen, dass an einem Ort alle Körper gleich zum Erdboden beschleunigen, wenn keine Reibungskräfte, sondern nur die Gewichtskraft auf die Körper wirkt.

Zum Artikel Zu den Aufgaben

Kommunizierende Röhren

Versuche

  • Demonstration der Bedeutung der Formel \(p=\rho\cdot g\cdot h\) für Füllhöhen von kommunizierenden Röhren.
  • Anknüpfung an technische Anwendungen, die dieses Prinzip ausnutzen.

Zum Artikel
Versuche

  • Demonstration der Bedeutung der Formel \(p=\rho\cdot g\cdot h\) für Füllhöhen von kommunizierenden Röhren.
  • Anknüpfung an technische Anwendungen, die dieses Prinzip ausnutzen.

Zum Artikel Zu den Aufgaben

Balkenwaage und Auftriebskraft

Versuche
Versuche

Heimversuch Kerzenwippe

Versuche
Versuche

Reibung an schiefer Ebene

Versuche

Reibungskoeffizienten lassen sich sehr einfach mit Hilfe der Steigung einer schiefen Ebene bestimmen

Zum Artikel
Versuche

Reibungskoeffizienten lassen sich sehr einfach mit Hilfe der Steigung einer schiefen Ebene bestimmen

Zum Artikel Zu den Aufgaben

Fallbeschleunigung auf dem Mond

Versuche
Versuche

Dartpfeil

Versuche

Mit diesem Versuch kannst du zeigen, dass ein waagerecht geworfener Körper sich auf gleiche Weise in Richtung Boden bewegt wie ein fallender Körper.

Zum Artikel
Versuche

Mit diesem Versuch kannst du zeigen, dass ein waagerecht geworfener Körper sich auf gleiche Weise in Richtung Boden bewegt wie ein fallender Körper.

Zum Artikel Zu den Aufgaben

Fallbeschleunigung mit dem Digitalzähler

Versuche

  • Bestimmung der Erdbeschleunigung \(g\) durch Analyse eines freien Falls

Zum Artikel
Versuche

  • Bestimmung der Erdbeschleunigung \(g\) durch Analyse eines freien Falls

Zum Artikel Zu den Aufgaben

Heimversuche zum Luftdruck

Versuche
Versuche

Luftdruck nach TORRICELLI

Versuche
Versuche

Hebelversuche

Versuche

  • Entwicklung des Hebelgesetzes am zweiseitigen Hebel
  • Entwicklung bzw. Bestätigung des Hebelgesetzes am einseitigen Hebel

Zum Artikel
Versuche

  • Entwicklung des Hebelgesetzes am zweiseitigen Hebel
  • Entwicklung bzw. Bestätigung des Hebelgesetzes am einseitigen Hebel

Zum Artikel Zu den Aufgaben

Feder-Schwere-Pendel (Smartphone-Experiment mit phyphox)

Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause die Bewegung eines Feder-Schwere-Pendels untersuchen. Die App auf deinem Smartphone bestimmt dabei die Periodendauer \(T\) bzw. die Frequenz \(f\) des Feder-Schwere-Pendels. So kannst du untersuchen, ob und wie die Periodendauer von

  • der Anfangsauslenkung \(y_0\)
  • der Federkonstante (Federhärte) \(D\)
  • der Masse \(m\) des Pendelkörpers

und eventuell noch anderen Größen abhängt.

Zum Artikel
Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause die Bewegung eines Feder-Schwere-Pendels untersuchen. Die App auf deinem Smartphone bestimmt dabei die Periodendauer \(T\) bzw. die Frequenz \(f\) des Feder-Schwere-Pendels. So kannst du untersuchen, ob und wie die Periodendauer von

  • der Anfangsauslenkung \(y_0\)
  • der Federkonstante (Federhärte) \(D\)
  • der Masse \(m\) des Pendelkörpers

und eventuell noch anderen Größen abhängt.

Zum Artikel Zu den Aufgaben

Feder-Schwere-Pendel für Fortgeschrittene (Smartphone-Experiment mit phyphox)

Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause den Zusammenhang \(T = 2 \cdot \pi \cdot \sqrt {\frac{m}{D}} \) zwischen der Schwingungsdauer \(T\), der Masse \(m\) des Pendelkörpers und der Federkonstanten \(D\) eines Federpendels experimentell bestätigen. Die App auf deinem Smartphone bestimmt dabei die Schwingungsdauer \(T\) bzw. die Frequenz \(f\).

Zum Artikel
Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause den Zusammenhang \(T = 2 \cdot \pi \cdot \sqrt {\frac{m}{D}} \) zwischen der Schwingungsdauer \(T\), der Masse \(m\) des Pendelkörpers und der Federkonstanten \(D\) eines Federpendels experimentell bestätigen. Die App auf deinem Smartphone bestimmt dabei die Schwingungsdauer \(T\) bzw. die Frequenz \(f\).

Zum Artikel Zu den Aufgaben

Fadenpendel (Smartphone-Experiment mit phyphox)

Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause die Bewegung eines Fadenpendels untersuchen. Die App auf deinem Smartphone bestimmt dabei die Periodendauer \(T\) bzw. die Frequenz \(f\) des Fadenpendels. So kannst du untersuchen, ob und wie die Periodendauer von

  • der Anfangsauslenkung \(x_0\)
  • der Fadenlänge \(l\)
  • der Masse \(m\) des Pendelkörpers

und eventuell noch anderen Größen abhängt.

Zum Artikel
Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause die Bewegung eines Fadenpendels untersuchen. Die App auf deinem Smartphone bestimmt dabei die Periodendauer \(T\) bzw. die Frequenz \(f\) des Fadenpendels. So kannst du untersuchen, ob und wie die Periodendauer von

  • der Anfangsauslenkung \(x_0\)
  • der Fadenlänge \(l\)
  • der Masse \(m\) des Pendelkörpers

und eventuell noch anderen Größen abhängt.

Zum Artikel Zu den Aufgaben

Feder-Schwere-Pendel für Experten (Smartphone-Experiment mit phyphox)

Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause die Abhängigkeit der Schwingungsdauer \(T\) von der Masse \(m\) des Pendelkörpers und der Federkonstanten \(D\) eines Feder-Schwere-Pendels experimentell entwickeln. Die App auf deinem Smartphone bestimmt dabei die Schwingungsdauer \(T\) bzw. die Frequenz \(f\).

Zum Artikel
Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause die Abhängigkeit der Schwingungsdauer \(T\) von der Masse \(m\) des Pendelkörpers und der Federkonstanten \(D\) eines Feder-Schwere-Pendels experimentell entwickeln. Die App auf deinem Smartphone bestimmt dabei die Schwingungsdauer \(T\) bzw. die Frequenz \(f\).

Zum Artikel Zu den Aufgaben

Fadenpendel für Fortgeschrittene (Smartphone-Experiment mit phyphox)

Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause den Zusammenhang \(T = 2 \cdot \pi \cdot \sqrt {\frac{l}{g}} \) zwischen der Schwingungsdauer \(T\), der Fadenlänge \(l\) und dem Ortsfaktor \(g\) experimentell bestätigen. Die App auf deinem Smartphone bestimmt dabei die Schwingungsdauer \(T\) bzw. die Frequenz \(f\).

Zum Artikel
Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause den Zusammenhang \(T = 2 \cdot \pi \cdot \sqrt {\frac{l}{g}} \) zwischen der Schwingungsdauer \(T\), der Fadenlänge \(l\) und dem Ortsfaktor \(g\) experimentell bestätigen. Die App auf deinem Smartphone bestimmt dabei die Schwingungsdauer \(T\) bzw. die Frequenz \(f\).

Zum Artikel Zu den Aufgaben

Fadenpendel für Experten (Smartphone-Experiment mit phyphox)

Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause die Abhängigkeit der Schwingungsdauer \(T\) von der Fadenlänge \(l\) eines Fadenpendels experimentell entwickeln. Die App auf deinem Smartphone bestimmt dabei die Schwingungsdauer \(T\) bzw. die Frequenz \(f\).

Zum Artikel
Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause die Abhängigkeit der Schwingungsdauer \(T\) von der Fadenlänge \(l\) eines Fadenpendels experimentell entwickeln. Die App auf deinem Smartphone bestimmt dabei die Schwingungsdauer \(T\) bzw. die Frequenz \(f\).

Zum Artikel Zu den Aufgaben