Direkt zum Inhalt
Suchergebnisse 61 - 90 von 256

Teilchenmodell

Grundwissen

  • Alle Körper sind aus kleinen, sich ständig bewegenden Teilchen aufgebaut.
  • Ein Körper hat unterschiedliche Eigeschaften, je nachdem ob er fest, flüssig oder gasförmig ist.
  • Je mehr ein Stoff erwärmt wird, desto mehr bewegen sich die Teilchen des Stoffes.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Alle Körper sind aus kleinen, sich ständig bewegenden Teilchen aufgebaut.
  • Ein Körper hat unterschiedliche Eigeschaften, je nachdem ob er fest, flüssig oder gasförmig ist.
  • Je mehr ein Stoff erwärmt wird, desto mehr bewegen sich die Teilchen des Stoffes.

Zum Artikel Zu den Aufgaben

EINSTEINs Theorie des Lichts

Grundwissen

  • Licht ist ein Strom aus Energiepaketen, sogenannten Photonen.
  • Ein Photon besitzt die Energie \(E_{\rm{Ph}} = h \cdot f\) und den Impuls \(p_{\rm{Ph}} = \frac{h}{\lambda }\).
  • Der äußere Photoeffekt kann mit dem Photonenmodell gut erklärt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Licht ist ein Strom aus Energiepaketen, sogenannten Photonen.
  • Ein Photon besitzt die Energie \(E_{\rm{Ph}} = h \cdot f\) und den Impuls \(p_{\rm{Ph}} = \frac{h}{\lambda }\).
  • Der äußere Photoeffekt kann mit dem Photonenmodell gut erklärt werden.

Zum Artikel Zu den Aufgaben

Schall, Schallquellen und Schallempfänger

Grundwissen

  • Schall entsteht durch in Bewegung bringen eines Mediums, also eines Gases, einer Flüssigkeit oder einem Festkörper.
  • Schall breitet sich aus, indem sich die Bewegung ausbreitet.
  • Schall breitet sich in unterschiedlichen Medien unterschiedlich aus.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Schall entsteht durch in Bewegung bringen eines Mediums, also eines Gases, einer Flüssigkeit oder einem Festkörper.
  • Schall breitet sich aus, indem sich die Bewegung ausbreitet.
  • Schall breitet sich in unterschiedlichen Medien unterschiedlich aus.

Zum Artikel Zu den Aufgaben

Universelle Gasgleichung

Grundwissen

Die universelle Gasgleichung lautet \[p \cdot V = k_{\rm B} \cdot N \cdot T\] mit dem Druck \(p\), dem Volumen \(V\), der Boltzmann-Konstanten \(k_{\rm B}\), der Teilchenzahl \(N\) und der Temperatur \(T\). 

Zum Artikel Zu den Aufgaben
Grundwissen

Die universelle Gasgleichung lautet \[p \cdot V = k_{\rm B} \cdot N \cdot T\] mit dem Druck \(p\), dem Volumen \(V\), der Boltzmann-Konstanten \(k_{\rm B}\), der Teilchenzahl \(N\) und der Temperatur \(T\). 

Zum Artikel Zu den Aufgaben

Starke und schwache Kausalität

Grundwissen

  • Schwacher Kausalität liegt vor, wenn exakt gleiche Ursachen die stets gleiche Wirkung zur Folge haben.
  •  Starker Kausalität liegt vor, wenn ähnliche Ursachen eine ähnliche Wirkung zur Folge haben. Kleine Änderungen im Ausgangszustand führen nur zu kleinen Änderungen im Ergebnis.
  • Viele Systeme in der Natur sind labile Gleichgewichtszustände. Hier liegt keine starke Kausalität vor.

Zum Artikel
Grundwissen

  • Schwacher Kausalität liegt vor, wenn exakt gleiche Ursachen die stets gleiche Wirkung zur Folge haben.
  •  Starker Kausalität liegt vor, wenn ähnliche Ursachen eine ähnliche Wirkung zur Folge haben. Kleine Änderungen im Ausgangszustand führen nur zu kleinen Änderungen im Ergebnis.
  • Viele Systeme in der Natur sind labile Gleichgewichtszustände. Hier liegt keine starke Kausalität vor.

Zum Artikel Zu den Aufgaben

Quantenobjekte

Grundwissen

Die Quantenphysik zeichnet sich durch vier zentrale Wesenszüge aus: Statistisches Verhalten, Fähigkeit zur Interferenz, Eindeutige Messergebnisse und Komplementarität

Zum Artikel Zu den Aufgaben
Grundwissen

Die Quantenphysik zeichnet sich durch vier zentrale Wesenszüge aus: Statistisches Verhalten, Fähigkeit zur Interferenz, Eindeutige Messergebnisse und Komplementarität

Zum Artikel Zu den Aufgaben

Kausalitätsprinzip - Grenzen der NEWTONschen Mechanik

Grundwissen

  • Würde man einen Zustand vollständig kennen, könnte man mit Hilfe der Naturgesetze alle Folgen daraus ableiten.
  • Damit wäre alles Geschehen der Welt unabänderlich bestimmt (Determinismus).
  • Die Quantenmechanik und die Relativitätstheorie machen jedoch die Grenzen des Determinismus deutlich.

Zum Artikel
Grundwissen

  • Würde man einen Zustand vollständig kennen, könnte man mit Hilfe der Naturgesetze alle Folgen daraus ableiten.
  • Damit wäre alles Geschehen der Welt unabänderlich bestimmt (Determinismus).
  • Die Quantenmechanik und die Relativitätstheorie machen jedoch die Grenzen des Determinismus deutlich.

Zum Artikel Zu den Aufgaben

Schwingungen der Luftsäule in Pfeifen

Grundwissen

  • Du unterscheidest bei Luftsäulen in Pfeifen zwischen offenen und gedeckten Pfeifen, je nachdem ob das Pfeifenrohr offen oder geschlossen ist.
  • Offene Pfeifen haben am offenen Ende stets einen Bewegungsbauch, gedeckte Pfeifen am geschlossenen Ende einen Bewegungsknoten.
  • Entsprechend haben eine offene und eine gedeckte Pfeife gleicher Länge eine unterschiedliche Grundschwingung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Du unterscheidest bei Luftsäulen in Pfeifen zwischen offenen und gedeckten Pfeifen, je nachdem ob das Pfeifenrohr offen oder geschlossen ist.
  • Offene Pfeifen haben am offenen Ende stets einen Bewegungsbauch, gedeckte Pfeifen am geschlossenen Ende einen Bewegungsknoten.
  • Entsprechend haben eine offene und eine gedeckte Pfeife gleicher Länge eine unterschiedliche Grundschwingung.

Zum Artikel Zu den Aufgaben

Stehende Wellen und Eigenschwingungen

Grundwissen

  • Schallwellen können reflektiert werden, z.B. von einer Wand oder einem Berghang.
  • Wellen können sich gegenseitig überlagern.
  • Stehende Wellen entstehen meist, wenn sich reflektierte Wellen in der Eigenfrequenz eines Systems überlagern.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Schallwellen können reflektiert werden, z.B. von einer Wand oder einem Berghang.
  • Wellen können sich gegenseitig überlagern.
  • Stehende Wellen entstehen meist, wenn sich reflektierte Wellen in der Eigenfrequenz eines Systems überlagern.

Zum Artikel Zu den Aufgaben

Masse-Energie-Beziehung

Grundwissen

  • Bei der Kernspaltung und der Kernfusion tritt ein Massendefekt \(\Delta m\) auf: Die Gesamtmasse vor der Spaltung bzw. Fusion entspricht nicht der Gesamtmasse danach.
  • Der Massendefekt berechnet sich mit \(\Delta m =m_{\rm{vor}}-m_{\rm{nach}}\).
  • Nach Einstein sind Masse und Energie hier gleichwertig (äquivalent) und es gilt die Beziehung \(\Delta E=\Delta m\cdot c^2\)

Zum Artikel
Grundwissen

  • Bei der Kernspaltung und der Kernfusion tritt ein Massendefekt \(\Delta m\) auf: Die Gesamtmasse vor der Spaltung bzw. Fusion entspricht nicht der Gesamtmasse danach.
  • Der Massendefekt berechnet sich mit \(\Delta m =m_{\rm{vor}}-m_{\rm{nach}}\).
  • Nach Einstein sind Masse und Energie hier gleichwertig (äquivalent) und es gilt die Beziehung \(\Delta E=\Delta m\cdot c^2\)

Zum Artikel Zu den Aufgaben

Kennlinien von Widerständen

Grundwissen

  • Die \(U\)-\(I\)-Kennlinie eines Leiters stellt den Zusammenhang zwischen angelegter Spannung \(U\) und sich ergebender Stromstärke \(I\) dar.
  • Die Kennlinien von ohmschen Widerständen sind Ursprungshalbgeraden.
  • Wird die \(U\)-\(I\)-Kennlinie eines Leiters mit zunehmender Spannung flacher, so nimmt der Widerstand des Leiters zu, wird sie steiler, so nimmt sein Widerstand ab.
  • Mit Hilfe der Kennlinie kannst du auch Spannungen und Ströme bei nicht ohmschen Widerständen ermitteln.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die \(U\)-\(I\)-Kennlinie eines Leiters stellt den Zusammenhang zwischen angelegter Spannung \(U\) und sich ergebender Stromstärke \(I\) dar.
  • Die Kennlinien von ohmschen Widerständen sind Ursprungshalbgeraden.
  • Wird die \(U\)-\(I\)-Kennlinie eines Leiters mit zunehmender Spannung flacher, so nimmt der Widerstand des Leiters zu, wird sie steiler, so nimmt sein Widerstand ab.
  • Mit Hilfe der Kennlinie kannst du auch Spannungen und Ströme bei nicht ohmschen Widerständen ermitteln.

Zum Artikel Zu den Aufgaben

Schaltung von Messgeräten

Grundwissen

  • Strommesser werden immer in Reihe geschaltet und müssen einen vernachlässigbaren Innenwiderstand besitzen.
  • Spannungsmesser werden immer parallel zu dem Bauteil geschaltet, dessen Spannung bzw. dessen verursachten Spannungsabfall du messen möchtest.
  • Spannungsmesser besitzen einen möglichst großen Innenwiderstand. 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Strommesser werden immer in Reihe geschaltet und müssen einen vernachlässigbaren Innenwiderstand besitzen.
  • Spannungsmesser werden immer parallel zu dem Bauteil geschaltet, dessen Spannung bzw. dessen verursachten Spannungsabfall du messen möchtest.
  • Spannungsmesser besitzen einen möglichst großen Innenwiderstand. 

Zum Artikel Zu den Aufgaben

Töne

Grundwissen

  • Die Frequenz einer Schallwelle bestimmt die wahrgenommene Tonhöhe.
  • Der Kammerton \(\bar{a}\) hat eine Frequenz von \(440\,\rm{Hz}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Frequenz einer Schallwelle bestimmt die wahrgenommene Tonhöhe.
  • Der Kammerton \(\bar{a}\) hat eine Frequenz von \(440\,\rm{Hz}\).

Zum Artikel Zu den Aufgaben

Widerstand

Grundwissen

  • Der Widerstand ist der Quotient aus der über dem Leiter abfallenden Spannung und der Stärke des Stroms, die durch den Leiter fließt.
  • Kurz: \(R=\frac{U}{I}\)
  • Die Einheit des elektrischen Widerstands ist \([R]:=1\,\Omega\,(\text{Ohm})\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Widerstand ist der Quotient aus der über dem Leiter abfallenden Spannung und der Stärke des Stroms, die durch den Leiter fließt.
  • Kurz: \(R=\frac{U}{I}\)
  • Die Einheit des elektrischen Widerstands ist \([R]:=1\,\Omega\,(\text{Ohm})\)

Zum Artikel Zu den Aufgaben

Ein- und Ausschalten von RC-Kreisen

Grundwissen

  • Ladung auf dem Kondensator, Strom im Kreis, und die Spannungen über dem Widerstand und dem Kondensator können beim Ein- und Ausschalten mit Exponentialfunktionen beschrieben werden.
  • Für die Halbwertszeit der Größen gilt jeweils \({t_H} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ladung auf dem Kondensator, Strom im Kreis, und die Spannungen über dem Widerstand und dem Kondensator können beim Ein- und Ausschalten mit Exponentialfunktionen beschrieben werden.
  • Für die Halbwertszeit der Größen gilt jeweils \({t_H} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel Zu den Aufgaben

Schallgeschwindigkeit

Grundwissen

  • Laufzeitmessungen sind eine einfache Methode zur Bestimmung der Schallgeschwindigkeit.
  • Die Schallgeschwindigkeit in Luft liegt im Bereich von \(c_{\rm{Schall}}=340\,\rm{\frac{m}{s}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Laufzeitmessungen sind eine einfache Methode zur Bestimmung der Schallgeschwindigkeit.
  • Die Schallgeschwindigkeit in Luft liegt im Bereich von \(c_{\rm{Schall}}=340\,\rm{\frac{m}{s}}\).

Zum Artikel Zu den Aufgaben

Möglichkeiten der Kernfusion

Grundwissen

  • Verschiedene Atomkern können unter geeigneten Bedingungen miteinander fusionieren.
  • Die fusionierenden Atomkerne bestimmen, wie groß die frei werdende Energie ist.
  • Damit es zur Fusion kommen kann, müssen die elektrostatischen Abstoßungskräfte der Kerne überwunden werden.

Zum Artikel
Grundwissen

  • Verschiedene Atomkern können unter geeigneten Bedingungen miteinander fusionieren.
  • Die fusionierenden Atomkerne bestimmen, wie groß die frei werdende Energie ist.
  • Damit es zur Fusion kommen kann, müssen die elektrostatischen Abstoßungskräfte der Kerne überwunden werden.

Zum Artikel Zu den Aufgaben

COULOMB-Gesetz

Grundwissen

  • Alle geladenen Körper üben aufeinander Kräfte aus, die man als elektrische Kräfte bezeichnet.
  • Die Richtung dieser Kräfte verläuft auf der Verbindungsgerade der beiden Ladungsschwerpunkte, der Betrag dieser Kräfte ist (wegen des Wechselwirkungsgesetzes) gleich groß.
  • Die Kräfte sind bei gleichartigen Ladungen voneinander weg und bei verschiedenartigen Ladungen aufeinander zu gerichtet.
  • Der Betrag ist proportional zu beiden Ladungen und umgekehrt proportional zum Quadrat des Abstandes der beiden Ladungsschwerpunkte.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Alle geladenen Körper üben aufeinander Kräfte aus, die man als elektrische Kräfte bezeichnet.
  • Die Richtung dieser Kräfte verläuft auf der Verbindungsgerade der beiden Ladungsschwerpunkte, der Betrag dieser Kräfte ist (wegen des Wechselwirkungsgesetzes) gleich groß.
  • Die Kräfte sind bei gleichartigen Ladungen voneinander weg und bei verschiedenartigen Ladungen aufeinander zu gerichtet.
  • Der Betrag ist proportional zu beiden Ladungen und umgekehrt proportional zum Quadrat des Abstandes der beiden Ladungsschwerpunkte.

Zum Artikel Zu den Aufgaben

Teilchen und Anti-Teilchen

Grundwissen

  • Zu jedem Materieteilchen gibt es ein Anti-Teilchen mit exakt der entgegengesetzten elektrischen, starken und schwachen Ladung.
  • Anti-Teilchen werden meist mit einem Querstrich über dem Teilchensymbol gekennzeichnet.
  • Trifft ein Materieteilchen auf sein Anti-Teilchen annihilieren sich beide (Paarvernichtung) - die vorhandene Energie wandelt sich in Botenteilchen um. 
  • Die Paarerzeugung kann nur unter bestimmten Rahmenbedingungen stattfinden, z.B. im Coulomb-Feld eines Atomkerns.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zu jedem Materieteilchen gibt es ein Anti-Teilchen mit exakt der entgegengesetzten elektrischen, starken und schwachen Ladung.
  • Anti-Teilchen werden meist mit einem Querstrich über dem Teilchensymbol gekennzeichnet.
  • Trifft ein Materieteilchen auf sein Anti-Teilchen annihilieren sich beide (Paarvernichtung) - die vorhandene Energie wandelt sich in Botenteilchen um. 
  • Die Paarerzeugung kann nur unter bestimmten Rahmenbedingungen stattfinden, z.B. im Coulomb-Feld eines Atomkerns.

Zum Artikel Zu den Aufgaben

Periodentafel der Elemente

Grundwissen

  • Die Struktur im Periodensystem der Elemente legen Beobachtungen hinsichtlich der Ionisierungsenergie und des Molvolumens nahe.
  • Die Anordnung der Elemente im Periodensystem erfolgt nach ihrer Ordnungszahl (Kernladungszahl) \(Z\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Struktur im Periodensystem der Elemente legen Beobachtungen hinsichtlich der Ionisierungsenergie und des Molvolumens nahe.
  • Die Anordnung der Elemente im Periodensystem erfolgt nach ihrer Ordnungszahl (Kernladungszahl) \(Z\).

Zum Artikel Zu den Aufgaben

Zusammenhang von Atom- und Kernmassen

Grundwissen

  • Die Atommasse \(m_{\rm{A}}\) unterscheidet sich von der Kernmasse \(m_{\rm{K}}\) um die Summe der Ruhemassen der im Atom gebundenen Elektronen und um die Bindungsenergie der Elektronen in der Atomhülle.
  • Die gesamte Elektronenbindungsenergie wird abgeschätzt mit \(B_{\rm{e}} = 15{,}73\,\rm{eV} \cdot Z^{\textstyle{7 \over 3}}\)
  • Oft reicht die näherungsweise Berechnung der Kernmasse mittels \(m_{\rm{K}}\left( \rm{X} \right) \approx m_{\rm{A}}\left( \rm{X} \right) - Z \cdot m_{\rm{e}}\)

Zum Artikel
Grundwissen

  • Die Atommasse \(m_{\rm{A}}\) unterscheidet sich von der Kernmasse \(m_{\rm{K}}\) um die Summe der Ruhemassen der im Atom gebundenen Elektronen und um die Bindungsenergie der Elektronen in der Atomhülle.
  • Die gesamte Elektronenbindungsenergie wird abgeschätzt mit \(B_{\rm{e}} = 15{,}73\,\rm{eV} \cdot Z^{\textstyle{7 \over 3}}\)
  • Oft reicht die näherungsweise Berechnung der Kernmasse mittels \(m_{\rm{K}}\left( \rm{X} \right) \approx m_{\rm{A}}\left( \rm{X} \right) - Z \cdot m_{\rm{e}}\)

Zum Artikel Zu den Aufgaben

Atomaufbau

Grundwissen

  • Modelle über den Atomaufbau haben sich ständig weiterentwickelt.
  • Ein Atom besteht aus einem sehr kleinen Atomkern und einer Hülle.
  • Der Atomkern besteht aus Protonen und Neutronen. In der Atomhülle halten sich die Elektronen auf.
  • Protonen und Neutronen bestehen wiederum jeweils aus drei Quarks.

Zum Artikel
Grundwissen

  • Modelle über den Atomaufbau haben sich ständig weiterentwickelt.
  • Ein Atom besteht aus einem sehr kleinen Atomkern und einer Hülle.
  • Der Atomkern besteht aus Protonen und Neutronen. In der Atomhülle halten sich die Elektronen auf.
  • Protonen und Neutronen bestehen wiederum jeweils aus drei Quarks.

Zum Artikel Zu den Aufgaben

Altersbestimmung mit der Radiocarbonmethode

Grundwissen

  • C‑14 ist ein natürliches radioaktives Kohlenstoffisotop, dass in jedem lebenden Organismus einen festen Anteil an allen Kohlenstoffisotopen hat.
  • Stirbt ein Organismus ab, so nimmt ab diesem Zeitpunkt der C‑14-Anteil entsprechend des Zerfallsgesetzes ab \(T_{1/2}\left(\text{C-14}\right)=5730\,\rm{a}\).
  • Aus dem verbleibenden C‑14-Anteil bzw. der entsprechenden Aktivität kann mit \(t = \frac{{\ln \left( {\frac{{N(t)}}{{N\left( 0 \right)}}} \right) \cdot {T_{1/2}}}}{{ - \ln (2)}}\)  das Alter der Probe berechnet werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • C‑14 ist ein natürliches radioaktives Kohlenstoffisotop, dass in jedem lebenden Organismus einen festen Anteil an allen Kohlenstoffisotopen hat.
  • Stirbt ein Organismus ab, so nimmt ab diesem Zeitpunkt der C‑14-Anteil entsprechend des Zerfallsgesetzes ab \(T_{1/2}\left(\text{C-14}\right)=5730\,\rm{a}\).
  • Aus dem verbleibenden C‑14-Anteil bzw. der entsprechenden Aktivität kann mit \(t = \frac{{\ln \left( {\frac{{N(t)}}{{N\left( 0 \right)}}} \right) \cdot {T_{1/2}}}}{{ - \ln (2)}}\)  das Alter der Probe berechnet werden.

Zum Artikel Zu den Aufgaben

Linearer Potentialtopf

Grundwissen

  • Im Modell des eindimensionalen linearen unendlichen Potentialtopfs ist die potentielle Energie eines Teilchens im Topf Null, an den Rändern unendlich groß.
  • Die Aufenthaltswahrscheinlichkeit des Teilchens am Topfrand ist Null. Die Eigenschwingungen des Teilchens im Potentialtopf sind daher analog zu stehenden Seilwellen an festen Enden.
  • Mit der Beziehung \(\lambda=\frac{h}{p}\) ergibt sich die Gesamtenergie des Teilchens im Potentialtopf zu \({E_{\rm{ges}}} = \frac{{{h^2}}}{{8 \cdot m \cdot {a^2}}} \cdot {n^2}\)
  • Mit \(n\in \left\{ {1\;;\;2\;;\;3\;;\;...} \right\}\) erhält man die verschiedenen Energieniveaus des Elektrons im Potentialtopf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Modell des eindimensionalen linearen unendlichen Potentialtopfs ist die potentielle Energie eines Teilchens im Topf Null, an den Rändern unendlich groß.
  • Die Aufenthaltswahrscheinlichkeit des Teilchens am Topfrand ist Null. Die Eigenschwingungen des Teilchens im Potentialtopf sind daher analog zu stehenden Seilwellen an festen Enden.
  • Mit der Beziehung \(\lambda=\frac{h}{p}\) ergibt sich die Gesamtenergie des Teilchens im Potentialtopf zu \({E_{\rm{ges}}} = \frac{{{h^2}}}{{8 \cdot m \cdot {a^2}}} \cdot {n^2}\)
  • Mit \(n\in \left\{ {1\;;\;2\;;\;3\;;\;...} \right\}\) erhält man die verschiedenen Energieniveaus des Elektrons im Potentialtopf.

Zum Artikel Zu den Aufgaben

Elektrische Stromstärke

Grundwissen

  • Die elektrische Stromstärke, Symbol \(I\), ist ein Maß für die elektrische Ladung, die pro Sekunde durch einen Leiterquerschnitt hindurchfließt.
  • Die Einheit der elektrischen Stromstärke ist das Ampere, Symbol \(\rm{A}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die elektrische Stromstärke, Symbol \(I\), ist ein Maß für die elektrische Ladung, die pro Sekunde durch einen Leiterquerschnitt hindurchfließt.
  • Die Einheit der elektrischen Stromstärke ist das Ampere, Symbol \(\rm{A}\).

Zum Artikel Zu den Aufgaben

Volumen- und Längenänderung von Festkörpern

Grundwissen

  • Festkörper dehnen sich beim Erwärmen i.d.R. in alle Raumrichtung gleichmäßig aus.
  • Bei Festkörpern gibt man oft den Längenausdehnungskoeffizienten \(\alpha\) an.
  • Für die Längenänderung gilt \(\Delta l = \alpha \cdot {l_0} \cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Festkörper dehnen sich beim Erwärmen i.d.R. in alle Raumrichtung gleichmäßig aus.
  • Bei Festkörpern gibt man oft den Längenausdehnungskoeffizienten \(\alpha\) an.
  • Für die Längenänderung gilt \(\Delta l = \alpha \cdot {l_0} \cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben

Generator- und Motorprinzip

Grundwissen

  • Die Funktionsweise von Generatoren und Elektromotoren sind physikalisch eng verbunden
  • Zentral ist bei beiden die Lorentzkraft auf bewegte Ladungen im Magnetfeld

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Funktionsweise von Generatoren und Elektromotoren sind physikalisch eng verbunden
  • Zentral ist bei beiden die Lorentzkraft auf bewegte Ladungen im Magnetfeld

Zum Artikel Zu den Aufgaben

Viertakt-Ottomotor

Grundwissen

  • Die 4 Takte sind: Ansaugen, Verdichten, Arbeiten, Auspuffen
  • Mehrere Zylinder eines Motors laufen versetzt. Ziel ist, dass immer ein Zylinder gerade im Arbeitstakt ist.
  • Der Wirkungsgrad eines Ottomotors liegt im Idealfall bei \(\eta=35\,\%\), meist jedoch deutlich darunter.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die 4 Takte sind: Ansaugen, Verdichten, Arbeiten, Auspuffen
  • Mehrere Zylinder eines Motors laufen versetzt. Ziel ist, dass immer ein Zylinder gerade im Arbeitstakt ist.
  • Der Wirkungsgrad eines Ottomotors liegt im Idealfall bei \(\eta=35\,\%\), meist jedoch deutlich darunter.

Zum Artikel Zu den Aufgaben

Herleitung der Wellenfunktion

Grundwissen

  • Die Wellenfunktion beschreibt die Ausbreitung einer Welle mathematisch.
  • Für eine in positive \(x\)-Richtung laufende Welle gilt: \(y(x;t) = \hat y \cdot \sin \left( {2\pi  \cdot \left( {\frac{t}{T} - \frac{x}{\lambda }} \right)} \right)\)

Zum Artikel
Grundwissen

  • Die Wellenfunktion beschreibt die Ausbreitung einer Welle mathematisch.
  • Für eine in positive \(x\)-Richtung laufende Welle gilt: \(y(x;t) = \hat y \cdot \sin \left( {2\pi  \cdot \left( {\frac{t}{T} - \frac{x}{\lambda }} \right)} \right)\)

Zum Artikel Zu den Aufgaben

KIRCHHOFFsche Gesetze für Fortgeschrittene

Grundwissen

  • Die Knotenregel kann auch bei beliebig vielen zu- und abfließenden Strömen genutzt werden.
  • Die Maschenregel gilt auch bei mehreren Quellen in einem Stromkreis.
  • So lassen sich auch Ströme und Spannungen in sehr komplexen Schaltungen berechnen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Knotenregel kann auch bei beliebig vielen zu- und abfließenden Strömen genutzt werden.
  • Die Maschenregel gilt auch bei mehreren Quellen in einem Stromkreis.
  • So lassen sich auch Ströme und Spannungen in sehr komplexen Schaltungen berechnen.

Zum Artikel Zu den Aufgaben