Direkt zum Inhalt
Suchergebnisse 241 - 270 von 288

Ferromagnetismus

Grundwissen

  • In ferromagnetischen Stoffen gibt es sog. WEISSsche Bezirke.
  • Ist das Material unmagnetisiert, so sind die WEISSschen Bezirke regellos ausgerichtet.
  • In einem äußeren Magnetfeld richten sich die WEISSschen Bezirke parallel zum äußeren Feld aus und verstärken dieses. 

Zum Artikel Zu den Aufgaben
Grundwissen

  • In ferromagnetischen Stoffen gibt es sog. WEISSsche Bezirke.
  • Ist das Material unmagnetisiert, so sind die WEISSschen Bezirke regellos ausgerichtet.
  • In einem äußeren Magnetfeld richten sich die WEISSschen Bezirke parallel zum äußeren Feld aus und verstärken dieses. 

Zum Artikel Zu den Aufgaben

Silizium-Solarzellen

Grundwissen

  • Klassische Silizium-Solarzellen bestehen aus einer n-dotierten und einer p-dotierten Schicht. Am Übergang bildet sich eine sog. Raumladungszone.
  • Einfallendes Licht löst in dieser Raumladungszone Elektronen von Atomen (innerer Fotoeffekt).
  • Der Wirkungsgrad von Solarzellen liegt aktuell bei 13% - 48%.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Klassische Silizium-Solarzellen bestehen aus einer n-dotierten und einer p-dotierten Schicht. Am Übergang bildet sich eine sog. Raumladungszone.
  • Einfallendes Licht löst in dieser Raumladungszone Elektronen von Atomen (innerer Fotoeffekt).
  • Der Wirkungsgrad von Solarzellen liegt aktuell bei 13% - 48%.

Zum Artikel Zu den Aufgaben

Zusammenhang der Diagramme

Grundwissen

  • Vom \(t\)-\(x\)- zum \(t\)-\(v\)-Diagramm gelangst du durch Berechnen der Geschwindigkeit \(v\) in jedem Abschnitt der Bewegung.
  • Vom \(t\)-\(v\)- zum \(t\)-\(x\)-Diagramm gelangst du durch Berechnen der jeweiligen Flächen zwischen Graph und Rechtsachse

Zum Artikel
Grundwissen

  • Vom \(t\)-\(x\)- zum \(t\)-\(v\)-Diagramm gelangst du durch Berechnen der Geschwindigkeit \(v\) in jedem Abschnitt der Bewegung.
  • Vom \(t\)-\(v\)- zum \(t\)-\(x\)-Diagramm gelangst du durch Berechnen der jeweiligen Flächen zwischen Graph und Rechtsachse

Zum Artikel Zu den Aufgaben

Periodische Bewegungen und Schwingungen

Grundwissen

  • Bei einer periodischen Bewegung kehrt ein Körper nach gleichlangen Zeitabschnitten immer wieder in den gleichen Bewegungszustand zurück.
  • Periodische Bewegungen um eine stabile Gleichgewichtslage herum, nennt man Schwingungen.

Zum Artikel
Grundwissen

  • Bei einer periodischen Bewegung kehrt ein Körper nach gleichlangen Zeitabschnitten immer wieder in den gleichen Bewegungszustand zurück.
  • Periodische Bewegungen um eine stabile Gleichgewichtslage herum, nennt man Schwingungen.

Zum Artikel Zu den Aufgaben

Stromkreiselemente

Grundwissen

  • Damit eine Lampe leuchtet, muss immer ein geschlossener Stromkreis vorliegen.
  • Kabel dienen als Verlängerungen und ermöglichen einen einfachen Aufbau.
  • Mit Schaltern kann der Stromkreis geöffnet und geschlossen werden.
  • Sicherungen schützen die Bauteile im Stromkreis vor zu großen Strömen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Damit eine Lampe leuchtet, muss immer ein geschlossener Stromkreis vorliegen.
  • Kabel dienen als Verlängerungen und ermöglichen einen einfachen Aufbau.
  • Mit Schaltern kann der Stromkreis geöffnet und geschlossen werden.
  • Sicherungen schützen die Bauteile im Stromkreis vor zu großen Strömen.

Zum Artikel Zu den Aufgaben

Volumenbestimmung

Grundwissen

  • Das Volumen regelmäßiger Festkörper kannst du berechnen.
  • Das Volumen unregelmäßiger Festkörper kannst du über ihre Verdrängung von Wasser bestimmen.
  • Flüssigkeiten füllst du zur Volumenbestimmung in einen Messzylinder.

Zum Artikel
Grundwissen

  • Das Volumen regelmäßiger Festkörper kannst du berechnen.
  • Das Volumen unregelmäßiger Festkörper kannst du über ihre Verdrängung von Wasser bestimmen.
  • Flüssigkeiten füllst du zur Volumenbestimmung in einen Messzylinder.

Zum Artikel Zu den Aufgaben

Gezeiten

Grundwissen

  • Den Wechsel von einem Niedrigwasser zum nächsten nennt man Tide.
  • Die Dauer einer Tide beträgt ca. 12 Stunden und 25 Minuten. Deswegen verschiebt sich die Ebbe bzw. die Flut von Tag zu Tag um 50 Minuten.
  • Der Mond und die Kreisbewegung der Erde um das Baryzentrum sind maßgeblich für Ebbe und Flut verantwortlich

Zum Artikel
Grundwissen

  • Den Wechsel von einem Niedrigwasser zum nächsten nennt man Tide.
  • Die Dauer einer Tide beträgt ca. 12 Stunden und 25 Minuten. Deswegen verschiebt sich die Ebbe bzw. die Flut von Tag zu Tag um 50 Minuten.
  • Der Mond und die Kreisbewegung der Erde um das Baryzentrum sind maßgeblich für Ebbe und Flut verantwortlich

Zum Artikel Zu den Aufgaben

Geschwindigkeitsaddition

Grundwissen

  • Ist \(u\) die Geschwindigkeit eines Körpers im System S und \(v\) die Geschwindigkeit des Systems S' in Bezug auf S und \(u'\) die Geschwindigkeit des Körpers im System S', dann gilt der Zusammenhang \(u = \frac{{u' + v}}{{1 + \frac{{u' \cdot v}}{{{c^2}}}}}\).

 

 

 

Zum Artikel
Grundwissen

  • Ist \(u\) die Geschwindigkeit eines Körpers im System S und \(v\) die Geschwindigkeit des Systems S' in Bezug auf S und \(u'\) die Geschwindigkeit des Körpers im System S', dann gilt der Zusammenhang \(u = \frac{{u' + v}}{{1 + \frac{{u' \cdot v}}{{{c^2}}}}}\).

 

 

 

Zum Artikel Zu den Aufgaben

Feder-Schwere-Pendel

Grundwissen

  • Ein Feder-Schwere-Pendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = \hat{y} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega } = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{y} \) der Schwingung und dem Ortsfaktor \(g\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Feder-Schwere-Pendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = \hat{y} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega } = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{y} \) der Schwingung und dem Ortsfaktor \(g\).

Zum Artikel Zu den Aufgaben

Parallelschaltung von Widerständen

Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier parallel geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(\frac{1}{R_{12}}=\frac{1}{R_1} +\frac{1}{R_2}\)
  •  Der Gesamtwiderstands einer Parallelschaltung ist stets kleiner als der kleinste Einzelwiderstand eines Astes.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier parallel geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(\frac{1}{R_{12}}=\frac{1}{R_1} +\frac{1}{R_2}\)
  •  Der Gesamtwiderstands einer Parallelschaltung ist stets kleiner als der kleinste Einzelwiderstand eines Astes.

Zum Artikel Zu den Aufgaben

OHMsches Gesetz

Grundwissen

Das Experiment zeigt, dass bei vielen elektrischen Leitern die Spannung \(U\), die über dem Leiter abfällt, proportional ist zur Stärke \(I\) des Stroms, der durch den Leiter fließt.

Diese Proportionalität bezeichnet man als das OHMsche Gesetz und beschreibt sie durch die Gleichung \(U = R \cdot I\).

Den Proportionalitätsfaktor \(R\) bezeichnet man als elektrischen Widerstand. Seine Maßeinheit ist \(1\,\Omega\) (Ohm).

Zum Artikel Zu den Aufgaben
Grundwissen

Das Experiment zeigt, dass bei vielen elektrischen Leitern die Spannung \(U\), die über dem Leiter abfällt, proportional ist zur Stärke \(I\) des Stroms, der durch den Leiter fließt.

Diese Proportionalität bezeichnet man als das OHMsche Gesetz und beschreibt sie durch die Gleichung \(U = R \cdot I\).

Den Proportionalitätsfaktor \(R\) bezeichnet man als elektrischen Widerstand. Seine Maßeinheit ist \(1\,\Omega\) (Ohm).

Zum Artikel Zu den Aufgaben

Einseitiger Hebel und Drehmoment

Grundwissen

  • Beim einseitigen Hebel greifen Kräfte nur auf eine Seite der Drehachse an, z.B. am Unterarm oder an einem Schraubenschlüssel.
  • Ein einseitiger Hebel ist im Gleichgewicht, wenn die Summe der Produkte \(F\cdot a\) aller wirkenden Kräfte gleich null ist.
  • Das Produkt aus Kraft \(F\) und Hebelarm \(a\) wird auch als Drehmoment \(M\) bezeichnet: \(M=F\cdot a\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim einseitigen Hebel greifen Kräfte nur auf eine Seite der Drehachse an, z.B. am Unterarm oder an einem Schraubenschlüssel.
  • Ein einseitiger Hebel ist im Gleichgewicht, wenn die Summe der Produkte \(F\cdot a\) aller wirkenden Kräfte gleich null ist.
  • Das Produkt aus Kraft \(F\) und Hebelarm \(a\) wird auch als Drehmoment \(M\) bezeichnet: \(M=F\cdot a\).

Zum Artikel Zu den Aufgaben

Wellrad

Grundwissen

  • Ein Wellrad kann physikalisch als Hebel aufgefasst werden.
  • Im Gleichgewichtsfall gilt am Wellrad \(F_1\cdot r_1=F_2\cdot r_2\).
  • Die genaue Richtung der Kraft spielt beim Wellrad nur eine untergeordnete Rolle, der Hebelarm entspricht immer dem Radius des Rades.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Wellrad kann physikalisch als Hebel aufgefasst werden.
  • Im Gleichgewichtsfall gilt am Wellrad \(F_1\cdot r_1=F_2\cdot r_2\).
  • Die genaue Richtung der Kraft spielt beim Wellrad nur eine untergeordnete Rolle, der Hebelarm entspricht immer dem Radius des Rades.

Zum Artikel Zu den Aufgaben

Zentraler unelastischer Stoß

Grundwissen

  • Beim unelastischen Stoß bleibt lediglich der Impuls erhalten.
  • Ein Teil der Bewegungsenergie wird beim Stoß in Wärme oder Verformung umgewandelt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim unelastischen Stoß bleibt lediglich der Impuls erhalten.
  • Ein Teil der Bewegungsenergie wird beim Stoß in Wärme oder Verformung umgewandelt.

Zum Artikel Zu den Aufgaben

Rückstoß

Grundwissen

  • Bei einem Rückstoß ist die kinetische Energie nach dem Stoß größer als vor dem Stoß
  • Dies ist möglich, wenn bspw. innere Energie durch eine chemische Reaktion frei wird.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einem Rückstoß ist die kinetische Energie nach dem Stoß größer als vor dem Stoß
  • Dies ist möglich, wenn bspw. innere Energie durch eine chemische Reaktion frei wird.

Zum Artikel Zu den Aufgaben

Kräfte an der schiefen Ebene (rechnerisch)

Grundwissen

Überlegungen am rechtwinkligen Dreieck ermöglichen eine rechnerische Addition bzw. Zerlegung von Kräften - insbesondere auch an der schiefen Ebene.

Für den Betrag \(F_{\rm{G,\parallel}}\) der parallel zur Ebene wirkende Hangabtriebskraft gilt \(F_{\rm{G,\parallel}}=F_{\rm G}\cdot \frac{h}{l}=F_{\rm G}\cdot \sin(\alpha)\).

Für den Betrag \(F_{\rm{G,\bot}}\) der senkrecht zur Ebene wirkende Normalkomponente der Gewichtskraft gilt \(F_{\rm{G,\bot}}=F_{\rm G}\cdot \frac{b}{l}=F_{\rm G}\cdot \cos(\alpha)\).

Zum Artikel Zu den Aufgaben
Grundwissen

Überlegungen am rechtwinkligen Dreieck ermöglichen eine rechnerische Addition bzw. Zerlegung von Kräften - insbesondere auch an der schiefen Ebene.

Für den Betrag \(F_{\rm{G,\parallel}}\) der parallel zur Ebene wirkende Hangabtriebskraft gilt \(F_{\rm{G,\parallel}}=F_{\rm G}\cdot \frac{h}{l}=F_{\rm G}\cdot \sin(\alpha)\).

Für den Betrag \(F_{\rm{G,\bot}}\) der senkrecht zur Ebene wirkende Normalkomponente der Gewichtskraft gilt \(F_{\rm{G,\bot}}=F_{\rm G}\cdot \frac{b}{l}=F_{\rm G}\cdot \cos(\alpha)\).

Zum Artikel Zu den Aufgaben

Gravitationskraft

Grundwissen

  • Die Gravitationskraft \(\vec F_{\rm{G}}\) zwischen zwei punktförmigen Massen \(m_1\) und \(m_2\) liegt auf der Verbindungslinie der beiden Massen. Der Betrag \(F_{\rm{G}}\) der Gravitationskraft ist proportional zu den Massen \(m_1\) sowie \(m_2\) und umgekehrt proportional zum Quadrat des Abstands \(r\) der Massen. Er berechnet sich durch \(F_{\rm{G}} = G \cdot \frac{m_1 \cdot m_2}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}674 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Die Gravitationskraft \(\vec F_{\rm{G}}\) auf eine punktförmige Masse \(m\) an der Erdoberfläche ist senkrecht zur Erdoberfläche gerichtet. Der Betrag \(F_{\rm{G}}\) der Gravitationskraft ist proportional zur Masse \(m\). Er berechnet sich durch \(F_{\rm{G}}=m \cdot g\). In der Praxis benutzen wir in Deutschland den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Gravitationskraft \(\vec F_{\rm{G}}\) zwischen zwei punktförmigen Massen \(m_1\) und \(m_2\) liegt auf der Verbindungslinie der beiden Massen. Der Betrag \(F_{\rm{G}}\) der Gravitationskraft ist proportional zu den Massen \(m_1\) sowie \(m_2\) und umgekehrt proportional zum Quadrat des Abstands \(r\) der Massen. Er berechnet sich durch \(F_{\rm{G}} = G \cdot \frac{m_1 \cdot m_2}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}674 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Die Gravitationskraft \(\vec F_{\rm{G}}\) auf eine punktförmige Masse \(m\) an der Erdoberfläche ist senkrecht zur Erdoberfläche gerichtet. Der Betrag \(F_{\rm{G}}\) der Gravitationskraft ist proportional zur Masse \(m\). Er berechnet sich durch \(F_{\rm{G}}=m \cdot g\). In der Praxis benutzen wir in Deutschland den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben

Energieentwertung durch Reibung

Grundwissen

  • Bei der Betrachtung von mechanischen Systemen wird die Reibung oft vernachlässigt.
  • In realen Systemen tritt (außer im Weltraum) allerdings immer Reibung auf.
  • Das Auftreten von Reibung ist mit einer irreversiblen Energieentwertung verbunden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei der Betrachtung von mechanischen Systemen wird die Reibung oft vernachlässigt.
  • In realen Systemen tritt (außer im Weltraum) allerdings immer Reibung auf.
  • Das Auftreten von Reibung ist mit einer irreversiblen Energieentwertung verbunden.

Zum Artikel Zu den Aufgaben

Leiter und Nichtleiter

Grundwissen

  • Materialien können grob in zwei Kategorien eingeteilt werden: Leiter (z.B. Metalle) und Nichtleiter (z.B. Kunststoffe).
  • Ob ein Material Strom gut oder schlecht leitet kannst du mit einer Testschaltung prüfen.
  • Je mehr Salz im Wasser gelöst ist, desto besser leitet Wasser Strom.
  • Die meisten Gase leiten Strom nicht.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Materialien können grob in zwei Kategorien eingeteilt werden: Leiter (z.B. Metalle) und Nichtleiter (z.B. Kunststoffe).
  • Ob ein Material Strom gut oder schlecht leitet kannst du mit einer Testschaltung prüfen.
  • Je mehr Salz im Wasser gelöst ist, desto besser leitet Wasser Strom.
  • Die meisten Gase leiten Strom nicht.

Zum Artikel Zu den Aufgaben

Stabile Kreisbahnen im Gravitationsfeld

Grundwissen

Bewegt sich ein Trabant auf einer stabilen Kreisbahn im Gravitationsfeld eines Zentralkörpers, dann beträgt

  • die potenzielle Energie des Systems Zentralkörper-Trabant \({E_{{\rm{pot}}}}\left( r \right) =  - G \cdot m \cdot M \cdot \frac{1}{r}\)
  • die kinetische Energie des Trabanten \({E_{{\rm{kin}}}} = \frac{1}{2} \cdot \left| {{E_{{\rm{pot}}}}} \right|\)
  • die Gesamtenergie des Systems Zentralkörper-Trabant \({E_{{\rm{ges}}}} = {\frac{1}{2} \cdot {E_{{\rm{pot}}}}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

Bewegt sich ein Trabant auf einer stabilen Kreisbahn im Gravitationsfeld eines Zentralkörpers, dann beträgt

  • die potenzielle Energie des Systems Zentralkörper-Trabant \({E_{{\rm{pot}}}}\left( r \right) =  - G \cdot m \cdot M \cdot \frac{1}{r}\)
  • die kinetische Energie des Trabanten \({E_{{\rm{kin}}}} = \frac{1}{2} \cdot \left| {{E_{{\rm{pot}}}}} \right|\)
  • die Gesamtenergie des Systems Zentralkörper-Trabant \({E_{{\rm{ges}}}} = {\frac{1}{2} \cdot {E_{{\rm{pot}}}}}\)

Zum Artikel Zu den Aufgaben

Elektrische Ladung

Grundwissen

  • Die Einheit der elektrischen Ladung, Symbol \(Q\), ist das Coulomb, Symbol \(\rm{C}\).
  • Ein Elektron besitzt die negative Elementarladung: \(q_{\rm{Elektron}}=-e = -1{,}6 \cdot 10^{-19}\,\rm{C}\).

Zum Artikel
Grundwissen

  • Die Einheit der elektrischen Ladung, Symbol \(Q\), ist das Coulomb, Symbol \(\rm{C}\).
  • Ein Elektron besitzt die negative Elementarladung: \(q_{\rm{Elektron}}=-e = -1{,}6 \cdot 10^{-19}\,\rm{C}\).

Zum Artikel Zu den Aufgaben

Arbeit im Weg-Kraft-Diagramm

Grundwissen

  • Die Formel $W=F\cdot s$ zur Berechnung der Arbeit gilt nur, wenn die wirkende Kraft konstant ist.
  • Ändern sich die wirkenden Kräfte hilft die Interpretation von Arbeit als Fläche im Weg-Kraft-Diagramm.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Formel $W=F\cdot s$ zur Berechnung der Arbeit gilt nur, wenn die wirkende Kraft konstant ist.
  • Ändern sich die wirkenden Kräfte hilft die Interpretation von Arbeit als Fläche im Weg-Kraft-Diagramm.

Zum Artikel Zu den Aufgaben

Elektrische Kraft (2 Spezialfälle)

Grundwissen

  • Die elektrische Kraft \(\vec F_{\rm{el}}\) auf eine Punktladung \(q\) im Zwischenraum zweier entgegengesetzt geladener paralleler Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist senkrecht zu den Plattenoberflächen gerichtet. Der Betrag \(F_{\rm{el}}\) dieser elektrischen Kraft berechnet sich durch \(F_{\rm{el}} = \frac{1}{\varepsilon _0} \cdot \frac{\left| Q \right| \cdot \left|q \right|}{A}\).
  • Die elektrische Kraft \(\vec F_{\rm{C}}\) auf eine Punktladung \(q\) im Abstand \(r\) von einer ortsfesten Punktladung \(Q\) (COULOMB-Kraft) liegt auf der Verbindungsgeraden der beiden Ladungen. Der Betrag \(F_{\rm{C}}\) dieser COULOMB-Kraft berechnet sich durch \(F_{\rm{C}} = \frac{1}{4 \cdot \pi  \cdot \varepsilon _0} \cdot \frac{\left|Q\right| \cdot \left|q\right|}{{{r^2}}}\).
  • Dabei ist jeweils \(\varepsilon_0 = 8{,}854 \cdot {10^{-12}}\,\frac{\rm{A}\,\rm{s}}{\rm{V}\,\rm{m}}\) die elektrische Feldkonstante. 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die elektrische Kraft \(\vec F_{\rm{el}}\) auf eine Punktladung \(q\) im Zwischenraum zweier entgegengesetzt geladener paralleler Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist senkrecht zu den Plattenoberflächen gerichtet. Der Betrag \(F_{\rm{el}}\) dieser elektrischen Kraft berechnet sich durch \(F_{\rm{el}} = \frac{1}{\varepsilon _0} \cdot \frac{\left| Q \right| \cdot \left|q \right|}{A}\).
  • Die elektrische Kraft \(\vec F_{\rm{C}}\) auf eine Punktladung \(q\) im Abstand \(r\) von einer ortsfesten Punktladung \(Q\) (COULOMB-Kraft) liegt auf der Verbindungsgeraden der beiden Ladungen. Der Betrag \(F_{\rm{C}}\) dieser COULOMB-Kraft berechnet sich durch \(F_{\rm{C}} = \frac{1}{4 \cdot \pi  \cdot \varepsilon _0} \cdot \frac{\left|Q\right| \cdot \left|q\right|}{{{r^2}}}\).
  • Dabei ist jeweils \(\varepsilon_0 = 8{,}854 \cdot {10^{-12}}\,\frac{\rm{A}\,\rm{s}}{\rm{V}\,\rm{m}}\) die elektrische Feldkonstante. 

Zum Artikel Zu den Aufgaben

Elektrisches Feld und Feldliniendarstellung

Grundwissen

  • Im Raum um eine Ladung herrscht ein elektrisches Feld. Dieses elektrische Feld überträgt die Kraftwirkung dieser Ladung auf andere Ladungen.
  • Die elektrische Feldstärke ist definiert als der Quotient aus der elektrischen Kraft \({\vec F_{\rm{el}}}\) auf eine Probeladung und der Probeladung \(q\): \(\vec E = \frac{{{{\vec F}_{\rm{el}}}}}{q}\).
  • Für die elektrische Feldstärke \(\vec E\) im Raum um eine punktförmige Ladung \(Q\) gilt: Der Feldstärkevektor ist für eine positive Ladung radial von der Ladung weg und für eine negative Ladung radial zur Ladung hin orientiert, der Betrag ist umgekehrt proportional zum Quadrat des Abstands \(r\) und hat den Wert \(E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{\left|Q\right|}{r^2}\).
  • Die elektrische Feldstärke \(\vec E\) im Zwischenraum zweier entgegengesetzt geladener Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist konstant (homogenes elektrisches Feld). Der Feldstärkevektor steht senkrecht zu den Plattenoberflächen, ist von der positiv zur negativ geladenen Platte orientiert und hat den Betrag \(E = \frac{1}{\varepsilon_0} \cdot \frac{\left|Q\right|}{A}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Raum um eine Ladung herrscht ein elektrisches Feld. Dieses elektrische Feld überträgt die Kraftwirkung dieser Ladung auf andere Ladungen.
  • Die elektrische Feldstärke ist definiert als der Quotient aus der elektrischen Kraft \({\vec F_{\rm{el}}}\) auf eine Probeladung und der Probeladung \(q\): \(\vec E = \frac{{{{\vec F}_{\rm{el}}}}}{q}\).
  • Für die elektrische Feldstärke \(\vec E\) im Raum um eine punktförmige Ladung \(Q\) gilt: Der Feldstärkevektor ist für eine positive Ladung radial von der Ladung weg und für eine negative Ladung radial zur Ladung hin orientiert, der Betrag ist umgekehrt proportional zum Quadrat des Abstands \(r\) und hat den Wert \(E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{\left|Q\right|}{r^2}\).
  • Die elektrische Feldstärke \(\vec E\) im Zwischenraum zweier entgegengesetzt geladener Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist konstant (homogenes elektrisches Feld). Der Feldstärkevektor steht senkrecht zu den Plattenoberflächen, ist von der positiv zur negativ geladenen Platte orientiert und hat den Betrag \(E = \frac{1}{\varepsilon_0} \cdot \frac{\left|Q\right|}{A}\).

Zum Artikel Zu den Aufgaben

Homogenes elektrisches Feld

Grundwissen

  • Hat die elektrische Feldstärke \(\vec E\) in einem Raumgebiet immer die gleiche Richtung, die gleiche Orientierung und den gleichen Betrag, so sprechen wir von einem homogenen elektrischen Feld in diesem Raumgebiet.
  • Wichtigstes Beispiel für ein homogenes elektrisches Feld ist das Feld im Zwischenraum zweier entgegengesetzt geladener Platten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Hat die elektrische Feldstärke \(\vec E\) in einem Raumgebiet immer die gleiche Richtung, die gleiche Orientierung und den gleichen Betrag, so sprechen wir von einem homogenen elektrischen Feld in diesem Raumgebiet.
  • Wichtigstes Beispiel für ein homogenes elektrisches Feld ist das Feld im Zwischenraum zweier entgegengesetzt geladener Platten.

Zum Artikel Zu den Aufgaben

Potenzial

Grundwissen

  • Jedem Punkt \(\rm{P}\) eines elektrischen Feldes kann ein Potenzial \(\varphi_{\rm{P}_0} \left( \rm{P} \right)=\frac{{{E_{{\rm{pot}}{\rm{,}}{{\rm{P}}_0}}}\left( {\rm{P}} \right)}}{q}\) zugeordnet werden. Dieses Potenzial ist von der Größe und der Anordnung der felderzeugenden Ladung \(Q\) und der Wahl eines Bezugspunktes \(\rm{P}_0\) abhängig.
  • Im COULOMB-Feld wählt man den Bezugspunkt des Potenzials unendlich weit von der felderzeugenden Ladung entfernt. Dann hat das Potenzial im Abstand \(r\) von der felderzeugenden Ladung den Wert \( {\varphi \left( r \right)} = \frac{1}{{4 \cdot \pi \cdot {\varepsilon _0}}} \cdot Q \cdot \frac{1}{r}\).
  • Im homogenen elektrischen Feld (z.B. im Zwischenraum zweier entgegengesetzt geladener Platten) wählt man als Bezugspunkt des Potenzials die Oberfläche der negativ geladenen Platte. Dann hat das Potenzial im Abstand \(x\) von der negativ geladenen Platte den Wert \(\varphi \left( x \right) = E \cdot x\) bzw. \(\varphi \left( x \right) = \frac{1}{{{\varepsilon_0}}} \cdot \frac{{\left| Q \right|}}{A} \cdot x\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Jedem Punkt \(\rm{P}\) eines elektrischen Feldes kann ein Potenzial \(\varphi_{\rm{P}_0} \left( \rm{P} \right)=\frac{{{E_{{\rm{pot}}{\rm{,}}{{\rm{P}}_0}}}\left( {\rm{P}} \right)}}{q}\) zugeordnet werden. Dieses Potenzial ist von der Größe und der Anordnung der felderzeugenden Ladung \(Q\) und der Wahl eines Bezugspunktes \(\rm{P}_0\) abhängig.
  • Im COULOMB-Feld wählt man den Bezugspunkt des Potenzials unendlich weit von der felderzeugenden Ladung entfernt. Dann hat das Potenzial im Abstand \(r\) von der felderzeugenden Ladung den Wert \( {\varphi \left( r \right)} = \frac{1}{{4 \cdot \pi \cdot {\varepsilon _0}}} \cdot Q \cdot \frac{1}{r}\).
  • Im homogenen elektrischen Feld (z.B. im Zwischenraum zweier entgegengesetzt geladener Platten) wählt man als Bezugspunkt des Potenzials die Oberfläche der negativ geladenen Platte. Dann hat das Potenzial im Abstand \(x\) von der negativ geladenen Platte den Wert \(\varphi \left( x \right) = E \cdot x\) bzw. \(\varphi \left( x \right) = \frac{1}{{{\varepsilon_0}}} \cdot \frac{{\left| Q \right|}}{A} \cdot x\).

Zum Artikel Zu den Aufgaben

Übersicht über die Strömungslehre

Grundwissen

  • Die Strömungslehre beschäftigt sich mit der Bewegung von Flüssigkeiten und Gasen.
  • Dabei unterscheidet man die Bewegung von Flüssigkeiten (Hydrodynamik) und die von Gasen (Aerodynamik).
  • Die Strömungslehre hat vielfältige Anwendungsmöglichkeiten im Alltag.

Zum Artikel
Grundwissen

  • Die Strömungslehre beschäftigt sich mit der Bewegung von Flüssigkeiten und Gasen.
  • Dabei unterscheidet man die Bewegung von Flüssigkeiten (Hydrodynamik) und die von Gasen (Aerodynamik).
  • Die Strömungslehre hat vielfältige Anwendungsmöglichkeiten im Alltag.

Zum Artikel Zu den Aufgaben

Kapazität des Plattenkondensators

Grundwissen

  • Die Kapazität eines Plattenkondensators (Flächeninhalt der (gleichgroßen) Platten \(A\), Plattenabstand \(d\), Dielektrikum mit relativer Dielektrizitätskonstante \({\varepsilon _r}\)) berechnet sich durch \(C = {\varepsilon _0} \cdot {\varepsilon _r} \cdot \frac{A}{d}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Kapazität eines Plattenkondensators (Flächeninhalt der (gleichgroßen) Platten \(A\), Plattenabstand \(d\), Dielektrikum mit relativer Dielektrizitätskonstante \({\varepsilon _r}\)) berechnet sich durch \(C = {\varepsilon _0} \cdot {\varepsilon _r} \cdot \frac{A}{d}\).

Zum Artikel Zu den Aufgaben

Kondensator und Kapazität

Grundwissen

  • Ein Kondensator ist eine Anordnung von zwei Leitern, zwischen denen sich ein isolierendes Material, ein sogenanntes Dielektrikum befindet.
  • Legt man über die beiden Leiter eine Spannung an, dann befinden sich nach einiger Zeit auf den Leitern entgegengesetzte, betraglich gleich große Ladungen.
  • Der Ladungsbetrag \(Q\), der sich auf dem Kondensator befindet, ist proportional zur Spannung \(U\), die über dem Kondensator anliegt: \(Q=C \cdot U\). Den Proportionalitätsfaktor \(C\) bezeichnet man als Kapazität des Kondensators. 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Kondensator ist eine Anordnung von zwei Leitern, zwischen denen sich ein isolierendes Material, ein sogenanntes Dielektrikum befindet.
  • Legt man über die beiden Leiter eine Spannung an, dann befinden sich nach einiger Zeit auf den Leitern entgegengesetzte, betraglich gleich große Ladungen.
  • Der Ladungsbetrag \(Q\), der sich auf dem Kondensator befindet, ist proportional zur Spannung \(U\), die über dem Kondensator anliegt: \(Q=C \cdot U\). Den Proportionalitätsfaktor \(C\) bezeichnet man als Kapazität des Kondensators. 

Zum Artikel Zu den Aufgaben

2. Newtonsches Gesetz (Aktionsprinzip)

Grundwissen

  • Wirkt auf einen Körper eine resultierende Kraft \(\vec{F}\), so wird der Körper in die Richtung der Kraft beschleunigt.
  • Es gilt \(\vec{F}=m\cdot \vec{a}=m\cdot \frac{\Delta \vec{v}}{\Delta t}\)
  • Die Einheit der Kraft ist 1 Newton: \(\left[ F \right] = \left[ m \right] \cdot \left[ a \right] = 1\,{\rm{kg}} \cdot 1\,\frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{kg}} \cdot \frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{N}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wirkt auf einen Körper eine resultierende Kraft \(\vec{F}\), so wird der Körper in die Richtung der Kraft beschleunigt.
  • Es gilt \(\vec{F}=m\cdot \vec{a}=m\cdot \frac{\Delta \vec{v}}{\Delta t}\)
  • Die Einheit der Kraft ist 1 Newton: \(\left[ F \right] = \left[ m \right] \cdot \left[ a \right] = 1\,{\rm{kg}} \cdot 1\,\frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{kg}} \cdot \frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{N}}\)

Zum Artikel Zu den Aufgaben