Direkt zum Inhalt
Suchergebnisse 151 - 180 von 206

Chemische Wirkung des elektrischen Stroms

Grundwissen

  • Mit Hilfe von elektrischem Strom können einige Stoffe zersetzt oder in andere Stoffe umgesetzt werden.
  • Die Elektrolyse von Wasser und das Galvanisieren sind zwei technische Anwendungen für die chemische Wirkung von Strom.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Mit Hilfe von elektrischem Strom können einige Stoffe zersetzt oder in andere Stoffe umgesetzt werden.
  • Die Elektrolyse von Wasser und das Galvanisieren sind zwei technische Anwendungen für die chemische Wirkung von Strom.

Zum Artikel Zu den Aufgaben

Leuchtwirkung des elektrischen Stroms

Grundwissen

  • Die Leuchtwirkung von elektrischem Strom wird im Alltag an vielen Stellen deutlich.
  • Es gibt viele unterschiedliche Lampentypen: Glühlampen, Halogenlampen, Leuchtstoffröhren und LEDs
  • LEDs und Leuchtstoffröhren wandeln einen größeren Teil der Energie in Licht um als Glühlampen.

Zum Artikel
Grundwissen

  • Die Leuchtwirkung von elektrischem Strom wird im Alltag an vielen Stellen deutlich.
  • Es gibt viele unterschiedliche Lampentypen: Glühlampen, Halogenlampen, Leuchtstoffröhren und LEDs
  • LEDs und Leuchtstoffröhren wandeln einen größeren Teil der Energie in Licht um als Glühlampen.

Zum Artikel Zu den Aufgaben

Potentielle Energie im homogenen Feld

Grundwissen

  • Bewegt sich eine Ladung im homogenen E-Feld in Richtung oder entgegen der Richtung der Feldlinien, so ändert sich die potentielle Energie der Ladung.
  • Allgemein ist die Änderung der potentiellen Energie gleich der negativen Feldarbeit, also \(\Delta {E_{\rm{pot}}} = - {W_{\rm{Feld}}}\).
  • Die Nulllage der potentiellen Energie wird meist auf die negative Platte gelegt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bewegt sich eine Ladung im homogenen E-Feld in Richtung oder entgegen der Richtung der Feldlinien, so ändert sich die potentielle Energie der Ladung.
  • Allgemein ist die Änderung der potentiellen Energie gleich der negativen Feldarbeit, also \(\Delta {E_{\rm{pot}}} = - {W_{\rm{Feld}}}\).
  • Die Nulllage der potentiellen Energie wird meist auf die negative Platte gelegt.

Zum Artikel Zu den Aufgaben

Magnetfeld eines geraden Leiters

Grundwissen

  • Das Magnetfeld um einen geraden Leiter verläuft in konzentrischen Kreisen um den Leiter.
  • Richtung und Stärke des Magnetfeldes werden u.a. von Stromstärke und Stromrichtung im Leiter bestimmt.
  • Die Richtung und die Orientierung des Magnetfeldes kannst du mit der Rechten-Faust-Regel ermitteln.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Magnetfeld um einen geraden Leiter verläuft in konzentrischen Kreisen um den Leiter.
  • Richtung und Stärke des Magnetfeldes werden u.a. von Stromstärke und Stromrichtung im Leiter bestimmt.
  • Die Richtung und die Orientierung des Magnetfeldes kannst du mit der Rechten-Faust-Regel ermitteln.

Zum Artikel Zu den Aufgaben

Magnetfeld einer Zylinderspule

Grundwissen

  • Das Magnetfeld im Innenraum einer langgestreckten Spule ist annähernd homogen.
  • Für die magnetische Feldstärke (magnetische Flussdichte) in einer luftgefüllten Spule gilt \(B = {\mu _0} \cdot \frac{{I \cdot N}}{l}\).
  • Die magnetische Feldstärke kann mithilfe ferromagnetischer Stoffe im Innenraum um den materialabhängigen Faktor \(\mu_r\) verstärkt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Magnetfeld im Innenraum einer langgestreckten Spule ist annähernd homogen.
  • Für die magnetische Feldstärke (magnetische Flussdichte) in einer luftgefüllten Spule gilt \(B = {\mu _0} \cdot \frac{{I \cdot N}}{l}\).
  • Die magnetische Feldstärke kann mithilfe ferromagnetischer Stoffe im Innenraum um den materialabhängigen Faktor \(\mu_r\) verstärkt werden.

Zum Artikel Zu den Aufgaben

Magnetfeld und Feldlinien

Grundwissen

  • Das Magnetfeld ist der Wirkungsbereich eines Magneten. Es beschreibt seine Kraftwirkung auf einen anderen Magneten.
  • Magnetfelder können mit Feldlinienbildern dargestellt werden.
  • Magnetische Feldlinien verlaufen außerhalb des Magneten vom Nord- zum Südpol und schneiden sich nicht.
  • Die Erde ist von einem Magnetfeld umgeben. Am geografischen Nordpol ist der magnetische Südpol.

Zum Artikel
Grundwissen

  • Das Magnetfeld ist der Wirkungsbereich eines Magneten. Es beschreibt seine Kraftwirkung auf einen anderen Magneten.
  • Magnetfelder können mit Feldlinienbildern dargestellt werden.
  • Magnetische Feldlinien verlaufen außerhalb des Magneten vom Nord- zum Südpol und schneiden sich nicht.
  • Die Erde ist von einem Magnetfeld umgeben. Am geografischen Nordpol ist der magnetische Südpol.

Zum Artikel Zu den Aufgaben

Totalreflexion

Grundwissen

  • Beim Übergang zwischen zwei Medien wird ein Teil des Lichtes reflektiert.
  • Nur beim Übergang vom optisch dichteren zum optisch dünneren Medium kann Totalreflexion auftreten.
  • Den Grenzwinkel der Totalreflexion \(\alpha_{\rm{Gr}}\) hängt von den beiden Materialien ab.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Übergang zwischen zwei Medien wird ein Teil des Lichtes reflektiert.
  • Nur beim Übergang vom optisch dichteren zum optisch dünneren Medium kann Totalreflexion auftreten.
  • Den Grenzwinkel der Totalreflexion \(\alpha_{\rm{Gr}}\) hängt von den beiden Materialien ab.

Zum Artikel Zu den Aufgaben

Gesetz von MALUS

Grundwissen

  • Gesetz von MALUS: \(I=I_0\cdot \cos^2\left( \alpha \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Gesetz von MALUS: \(I=I_0\cdot \cos^2\left( \alpha \right)\)

Zum Artikel Zu den Aufgaben

Polarisation von Licht - Einführung

Grundwissen

  • Die Polarisation beschreibt die Schwingungsrichtung einer Transversalwelle.
  • Lineare Polarisationsfilter können nur von Licht einer bestimmten Schwingungsrichtung passiert werden.
  • Laserlicht und das Licht von Computerdisplays ist polarisiert.

Zum Artikel
Grundwissen

  • Die Polarisation beschreibt die Schwingungsrichtung einer Transversalwelle.
  • Lineare Polarisationsfilter können nur von Licht einer bestimmten Schwingungsrichtung passiert werden.
  • Laserlicht und das Licht von Computerdisplays ist polarisiert.

Zum Artikel Zu den Aufgaben

Polarisation von Licht - Fortführung

Grundwissen

  • Passiert unpolarisiertes Licht einen idealen linearen Polarisationsfilter, so halbiert sich seine Intensität.
  • Sind zwei Polarisationsfilter mit ihren Polarisationsachsen senkrecht zueinander ausgerichtet, kann kein Licht die Anordnung passieren.
  • Sind zwei Polarisationsfilter mit ihren Polarisationsachsen verdreht zueinander ausgerichtet, passiert ein Teil des Lichtes die Anordnung mit geänderter Polarisationsrichtung.

Zum Artikel
Grundwissen

  • Passiert unpolarisiertes Licht einen idealen linearen Polarisationsfilter, so halbiert sich seine Intensität.
  • Sind zwei Polarisationsfilter mit ihren Polarisationsachsen senkrecht zueinander ausgerichtet, kann kein Licht die Anordnung passieren.
  • Sind zwei Polarisationsfilter mit ihren Polarisationsachsen verdreht zueinander ausgerichtet, passiert ein Teil des Lichtes die Anordnung mit geänderter Polarisationsrichtung.

Zum Artikel Zu den Aufgaben

BREWSTER-Winkel

Grundwissen

  • Fällt unpolarisiertes Licht im Brewster-Winkel auf die Grenzfläche zweier Medien, so ist das reflektierte Licht senkrecht zur Einfallsebene polarisiert.
  • Für den Brewster-Winkel gilt:  \(\theta_{\rm B}=\tan^{-1}\left(\frac{n_2}{n_1}\right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Fällt unpolarisiertes Licht im Brewster-Winkel auf die Grenzfläche zweier Medien, so ist das reflektierte Licht senkrecht zur Einfallsebene polarisiert.
  • Für den Brewster-Winkel gilt:  \(\theta_{\rm B}=\tan^{-1}\left(\frac{n_2}{n_1}\right)\).

Zum Artikel Zu den Aufgaben

Doppelspalt

Grundwissen

  • Das Schirmbild hinter einem Doppelspalt zeigt Beugungs- und Interferenzerscheinungen.
  • Die Lage der Maxima und Minima wird u.a. vom Spaltabstand \(d\) und der Wellenlänge \(\lambda\) beeinflusst.
  • Es gibt Bedingungen für konstruktive und destruktive Interferenz.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Schirmbild hinter einem Doppelspalt zeigt Beugungs- und Interferenzerscheinungen.
  • Die Lage der Maxima und Minima wird u.a. vom Spaltabstand \(d\) und der Wellenlänge \(\lambda\) beeinflusst.
  • Es gibt Bedingungen für konstruktive und destruktive Interferenz.

Zum Artikel Zu den Aufgaben

Gittertypen

Grundwissen

  • Man unterscheidet zwischen Transmissions- und Reflexionsgittern.
  • Bei Transmissionsgittern passiert das Licht ein Gitter und wird gebeugt.
  • Bei Reflexionsgittern entstehen Beugungseffekte durch Reflexion an einer präpariertem, spiegelnden Schicht.

Zum Artikel
Grundwissen

  • Man unterscheidet zwischen Transmissions- und Reflexionsgittern.
  • Bei Transmissionsgittern passiert das Licht ein Gitter und wird gebeugt.
  • Bei Reflexionsgittern entstehen Beugungseffekte durch Reflexion an einer präpariertem, spiegelnden Schicht.

Zum Artikel Zu den Aufgaben

Geometrie der Ellipse

Grundwissen

  • Planetenbahnen können nach KEPLER sehr gut als Ellipsen beschrieben werden.
  • Ellipsen haben zwei Brennpunkte.
  • Wichtige Begriffe sind die große Halbachse \(a\), die kleine Halbachse \(b\) und die Exzentrizität \(\varepsilon\).

Zum Artikel
Grundwissen

  • Planetenbahnen können nach KEPLER sehr gut als Ellipsen beschrieben werden.
  • Ellipsen haben zwei Brennpunkte.
  • Wichtige Begriffe sind die große Halbachse \(a\), die kleine Halbachse \(b\) und die Exzentrizität \(\varepsilon\).

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung von Induktionsvorgängen

Grundwissen

  • Bei unseren Versuchen und Aufgaben zur Induktion ist das magnetische Feld stets homogen und kann durch einen einzigen Feldvektor \(\vec B\) beschrieben werden.
  • Bei unseren Versuchen und Aufgaben zur Induktion ist die Leiterschleife stets eben und kann durch einen einzigen Flächenvektor \(\vec A\) beschrieben werden. \(\vec A\) beschreibt dabei die (Teil-)Fläche der Leiterschleife, die sich im magnetischen Feld befindet.
  • Bei Induktionsvorgängen ist \(\varphi\) die Weite des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\).

Zum Artikel
Grundwissen

  • Bei unseren Versuchen und Aufgaben zur Induktion ist das magnetische Feld stets homogen und kann durch einen einzigen Feldvektor \(\vec B\) beschrieben werden.
  • Bei unseren Versuchen und Aufgaben zur Induktion ist die Leiterschleife stets eben und kann durch einen einzigen Flächenvektor \(\vec A\) beschrieben werden. \(\vec A\) beschreibt dabei die (Teil-)Fläche der Leiterschleife, die sich im magnetischen Feld befindet.
  • Bei Induktionsvorgängen ist \(\varphi\) die Weite des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\).

Zum Artikel Zu den Aufgaben

Das menschliche Auge - Aufbau und scharfes Sehen

Grundwissen

  • Das menschliche Auge besteht u.a. aus einer (Sammel-)Linse und der Netzhaut, auf die das Bild der Umwelt abgebildet wird.
  • Um einen Gegenstand scharf zu sehen, muss der Gegenstand scharf auf der Netzhaut abgebildet werden.
  • Die Brennweite der Augenlinse verändert sich wenn du nahe bzw. weit entfernte Gegenstände anschaust.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das menschliche Auge besteht u.a. aus einer (Sammel-)Linse und der Netzhaut, auf die das Bild der Umwelt abgebildet wird.
  • Um einen Gegenstand scharf zu sehen, muss der Gegenstand scharf auf der Netzhaut abgebildet werden.
  • Die Brennweite der Augenlinse verändert sich wenn du nahe bzw. weit entfernte Gegenstände anschaust.

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis ungedämpft

Grundwissen

  • Ein Schwingkreis besteht zentral aus einem Kondensator mit Kapazität \(C\), der zu Beginn mittels elektrischer Quelle auf \(U_0\) aufgeladen wird, und einer Spule der Induktivität \(L\).
  • Im ungedämpften Fall schwingt der Kreis harmonisch mit der Schwingungsdauer \(T = 2 \cdot \pi \cdot \sqrt {L \cdot C}\)
  • Die Spannung über dem Kondensator wird beschrieben durch \(U_C(t) = \left| {{U_0}} \right| \cdot \cos \left( {{\omega _0} \cdot t} \right)\quad {\rm{mit}}\quad{\omega _0} = \sqrt {\frac{1}{L \cdot C}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Schwingkreis besteht zentral aus einem Kondensator mit Kapazität \(C\), der zu Beginn mittels elektrischer Quelle auf \(U_0\) aufgeladen wird, und einer Spule der Induktivität \(L\).
  • Im ungedämpften Fall schwingt der Kreis harmonisch mit der Schwingungsdauer \(T = 2 \cdot \pi \cdot \sqrt {L \cdot C}\)
  • Die Spannung über dem Kondensator wird beschrieben durch \(U_C(t) = \left| {{U_0}} \right| \cdot \cos \left( {{\omega _0} \cdot t} \right)\quad {\rm{mit}}\quad{\omega _0} = \sqrt {\frac{1}{L \cdot C}}\)

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis gedämpft

Grundwissen

  • Der Widerstand der Bauteile in einem Schwingkreis führt zur Dämpfung der Schwingung.
  • Die Differentialgleichung der gedämpften elektromagnetischen Schwingung ist \(L \cdot \ddot Q + \frac{Q}{C} + R \cdot \dot Q = 0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Widerstand der Bauteile in einem Schwingkreis führt zur Dämpfung der Schwingung.
  • Die Differentialgleichung der gedämpften elektromagnetischen Schwingung ist \(L \cdot \ddot Q + \frac{Q}{C} + R \cdot \dot Q = 0\).

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis angeregt

Grundwissen

  • Einem angeregten elektromagnetischen Schwingkreis wird eine äußere Spannung \(U(t)\) aufgeprägt.
  •  Die Differentialgleichung lautet \(U(t) = L \cdot \ddot Q + \frac{Q}{C} + R \cdot \dot Q\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Einem angeregten elektromagnetischen Schwingkreis wird eine äußere Spannung \(U(t)\) aufgeprägt.
  •  Die Differentialgleichung lautet \(U(t) = L \cdot \ddot Q + \frac{Q}{C} + R \cdot \dot Q\)

Zum Artikel Zu den Aufgaben

BRAGG-Reflexion

Grundwissen

  • Elektromagnetische Wellen mit kleinen Wellenlängen wie z.B. RÖNTGEN-Strahlung untersucht man mit Hilfe von Kristallen, die eine regelmäßige Gitterstruktur besitzen
  • Eine elektromagnetische Welle mit einer bestimmten Wellenlänge wird von einem solchen Kristall nur dann reflektiert, wenn sie unter ganz bestimmten Winkeln (Glanzwinkeln) auf den Kristall trifft
  • Zwischen der Wellenlänge \(\lambda\), dem Netzebenenabstand \(d\) des Kristallgitters, den Weiten \(\theta_k \) der Glanzwinkel und der entsprechenden Ordnung \(k\) des Glanzwinkels besteht die sogenannte BRAGG-Gleichung oder BRAGG-Bedingung \(k \cdot \lambda  = 2 \cdot d \cdot \sin \left( \theta_k  \right)\;;\;k \in \left\{ {1\,;\,2\,;\,3\,;\,...} \right\}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Elektromagnetische Wellen mit kleinen Wellenlängen wie z.B. RÖNTGEN-Strahlung untersucht man mit Hilfe von Kristallen, die eine regelmäßige Gitterstruktur besitzen
  • Eine elektromagnetische Welle mit einer bestimmten Wellenlänge wird von einem solchen Kristall nur dann reflektiert, wenn sie unter ganz bestimmten Winkeln (Glanzwinkeln) auf den Kristall trifft
  • Zwischen der Wellenlänge \(\lambda\), dem Netzebenenabstand \(d\) des Kristallgitters, den Weiten \(\theta_k \) der Glanzwinkel und der entsprechenden Ordnung \(k\) des Glanzwinkels besteht die sogenannte BRAGG-Gleichung oder BRAGG-Bedingung \(k \cdot \lambda  = 2 \cdot d \cdot \sin \left( \theta_k  \right)\;;\;k \in \left\{ {1\,;\,2\,;\,3\,;\,...} \right\}\)

Zum Artikel Zu den Aufgaben

Einfache Stromkreise

Grundwissen

  • Es gibt viele verschieden Arten Stromkreise zu schalten.
  • Bei UND-Schaltungen müssen für einen Stromfluss alle Schalter geschlossen sein.
  • Bei ODER-Schaltungen muss für einen Stromfluss nur ein Schalter geschlossen sein.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Es gibt viele verschieden Arten Stromkreise zu schalten.
  • Bei UND-Schaltungen müssen für einen Stromfluss alle Schalter geschlossen sein.
  • Bei ODER-Schaltungen muss für einen Stromfluss nur ein Schalter geschlossen sein.

Zum Artikel Zu den Aufgaben

Kraft zwischen Magnetpolen

Grundwissen

  • Gleichartige Pole stoßen sich ab, verschiedenartige Pole ziehen sich an.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft wächst mit der "Stärke" der Magnetpole.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft sinkt mit der Vergrößerung des Abstands zwischen den Magnetpolen.

Zum Artikel
Grundwissen

  • Gleichartige Pole stoßen sich ab, verschiedenartige Pole ziehen sich an.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft wächst mit der "Stärke" der Magnetpole.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft sinkt mit der Vergrößerung des Abstands zwischen den Magnetpolen.

Zum Artikel Zu den Aufgaben

Kraft zwischen elektrischen Ladungen

Grundwissen

  • Gleichnamige Ladungen stoßen sich ab, ungleichnamige Ladungen ziehen sich an.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft wächst mit der "Größe" der Ladungen.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft sinkt mit der Vergrößerung des Abstands zwischen den Ladungen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Gleichnamige Ladungen stoßen sich ab, ungleichnamige Ladungen ziehen sich an.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft wächst mit der "Größe" der Ladungen.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft sinkt mit der Vergrößerung des Abstands zwischen den Ladungen.

Zum Artikel Zu den Aufgaben

HALL-Effekt

Grundwissen

  • Befindet sich ein stromdurchflossener Leiter in einem homogenen Magnetfeld, dann baut sich senkrecht sowohl zur Stromfluss- als auch zur Magnetfeldrichtung über dem Leiter eine Spannung, die sogenannte HALL-Spannung \(U_{\rm{H}}\) auf.
  • Ist \(I\) die Stärke des Stroms durch den Leiter, \(B\) die magnetische Feldstärke und \(d\) die Dicke des Leiters parallel zu \(\vec B\), dann berechnet sich die HALL-Spannung durch \({U_{\rm{H}}} = {R_{\rm{H}}} \cdot \frac{{I \cdot B}}{d}\) mit der vom Material des Leiters abhängigen HALL-Konstanten \({R_{\rm{H}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Befindet sich ein stromdurchflossener Leiter in einem homogenen Magnetfeld, dann baut sich senkrecht sowohl zur Stromfluss- als auch zur Magnetfeldrichtung über dem Leiter eine Spannung, die sogenannte HALL-Spannung \(U_{\rm{H}}\) auf.
  • Ist \(I\) die Stärke des Stroms durch den Leiter, \(B\) die magnetische Feldstärke und \(d\) die Dicke des Leiters parallel zu \(\vec B\), dann berechnet sich die HALL-Spannung durch \({U_{\rm{H}}} = {R_{\rm{H}}} \cdot \frac{{I \cdot B}}{d}\) mit der vom Material des Leiters abhängigen HALL-Konstanten \({R_{\rm{H}}}\).

Zum Artikel Zu den Aufgaben

Geladene Teilchen in elektrischen und magnetischen Feldern

Grundwissen

  • Hier findest du vermischte Aufgaben zu allen Themen aus diesem Themenbereich

Zum Artikel Zu den Aufgaben
Grundwissen

  • Hier findest du vermischte Aufgaben zu allen Themen aus diesem Themenbereich

Zum Artikel Zu den Aufgaben

Elektromotor

Grundwissen

  • Ein Elektromotor wandelt elektrische in mechanische Energie um.
  • Meist besteht eine Elektromotor aus einem äußeren, von den Statoren verursachten Magnetfeld, in dem sich ein Elektromagnet (Rotor) dreht.
  • Die Abstoßung gleichnamiger bzw. die Anziehung ungleichnamiger Magnetpole sorgt für die Bewegung des Rotors.
  • Der Kommutator sorgt für eine Umpolung des Rotors. Nur so bewegt sich der Motor kontinuierlich.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Elektromotor wandelt elektrische in mechanische Energie um.
  • Meist besteht eine Elektromotor aus einem äußeren, von den Statoren verursachten Magnetfeld, in dem sich ein Elektromagnet (Rotor) dreht.
  • Die Abstoßung gleichnamiger bzw. die Anziehung ungleichnamiger Magnetpole sorgt für die Bewegung des Rotors.
  • Der Kommutator sorgt für eine Umpolung des Rotors. Nur so bewegt sich der Motor kontinuierlich.

Zum Artikel Zu den Aufgaben

Ferromagnetismus

Grundwissen

  • In ferromagnetischen Stoffen gibt es sog. WEISSsche Bezirke.
  • Ist das Material unmagnetisiert, so sind die WEISSschen Bezirke regellos ausgerichtet.
  • In einem äußeren Magnetfeld richten sich die WEISSschen Bezirke parallel zum äußeren Feld aus und verstärken dieses. 

Zum Artikel Zu den Aufgaben
Grundwissen

  • In ferromagnetischen Stoffen gibt es sog. WEISSsche Bezirke.
  • Ist das Material unmagnetisiert, so sind die WEISSschen Bezirke regellos ausgerichtet.
  • In einem äußeren Magnetfeld richten sich die WEISSschen Bezirke parallel zum äußeren Feld aus und verstärken dieses. 

Zum Artikel Zu den Aufgaben

Bewegung der Himmelskörper

Grundwissen

  • Die Himmelskörper ruhen nicht, sondern sie befinden sich in einer oder mehreren Drehbewegungen.

Zum Artikel
Grundwissen

  • Die Himmelskörper ruhen nicht, sondern sie befinden sich in einer oder mehreren Drehbewegungen.

Zum Artikel Zu den Aufgaben

Stromkreiselemente

Grundwissen

  • Damit eine Lampe leuchtet, muss immer ein geschlossener Stromkreis vorliegen.
  • Kabel dienen als Verlängerungen und ermöglichen einen einfachen Aufbau.
  • Mit Schaltern kann der Stromkreis geöffnet und geschlossen werden.
  • Sicherungen schützen die Bauteile im Stromkreis vor zu großen Strömen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Damit eine Lampe leuchtet, muss immer ein geschlossener Stromkreis vorliegen.
  • Kabel dienen als Verlängerungen und ermöglichen einen einfachen Aufbau.
  • Mit Schaltern kann der Stromkreis geöffnet und geschlossen werden.
  • Sicherungen schützen die Bauteile im Stromkreis vor zu großen Strömen.

Zum Artikel Zu den Aufgaben

Kosmologische Rotverschiebung

Grundwissen

  • In den Spektren weit entfernter Galaxien finden sich, wie beim Sonnenspektrum, verschiedene Absorptionslinien.
  • Die Absorptionslinien weit entfernter Galaxien sind deutlich stärker ins Rote verschoben.
  • Ursache für die kosmologische Rotverschiebung ist die Ausdehnung des Raumes selbst, nicht eine Relativbewegung der Galaxie im Vergleich zum Beobachter.
  • In der Astronomie wird die Rotverschiebung häufig durch die dimensionslose Größe \(z=\frac{\lambda_{\rm{beobachtet}}}{\lambda_0}-1\) angegeben.

Zum Artikel
Grundwissen

  • In den Spektren weit entfernter Galaxien finden sich, wie beim Sonnenspektrum, verschiedene Absorptionslinien.
  • Die Absorptionslinien weit entfernter Galaxien sind deutlich stärker ins Rote verschoben.
  • Ursache für die kosmologische Rotverschiebung ist die Ausdehnung des Raumes selbst, nicht eine Relativbewegung der Galaxie im Vergleich zum Beobachter.
  • In der Astronomie wird die Rotverschiebung häufig durch die dimensionslose Größe \(z=\frac{\lambda_{\rm{beobachtet}}}{\lambda_0}-1\) angegeben.

Zum Artikel Zu den Aufgaben