Direkt zum Inhalt
Suchergebnisse 61 - 90 von 267

Universelle Gasgleichung

Grundwissen

Die universelle Gasgleichung lautet \[p \cdot V = k_{\rm B} \cdot N \cdot T\] mit dem Druck \(p\), dem Volumen \(V\), der Boltzmann-Konstanten \(k_{\rm B}\), der Teilchenzahl \(N\) und der Temperatur \(T\). 

Zum Artikel Zu den Aufgaben
Grundwissen

Die universelle Gasgleichung lautet \[p \cdot V = k_{\rm B} \cdot N \cdot T\] mit dem Druck \(p\), dem Volumen \(V\), der Boltzmann-Konstanten \(k_{\rm B}\), der Teilchenzahl \(N\) und der Temperatur \(T\). 

Zum Artikel Zu den Aufgaben

Starke und schwache Kausalität

Grundwissen

  • Schwacher Kausalität liegt vor, wenn exakt gleiche Ursachen die stets gleiche Wirkung zur Folge haben.
  •  Starker Kausalität liegt vor, wenn ähnliche Ursachen eine ähnliche Wirkung zur Folge haben. Kleine Änderungen im Ausgangszustand führen nur zu kleinen Änderungen im Ergebnis.
  • Viele Systeme in der Natur sind labile Gleichgewichtszustände. Hier liegt keine starke Kausalität vor.

Zum Artikel
Grundwissen

  • Schwacher Kausalität liegt vor, wenn exakt gleiche Ursachen die stets gleiche Wirkung zur Folge haben.
  •  Starker Kausalität liegt vor, wenn ähnliche Ursachen eine ähnliche Wirkung zur Folge haben. Kleine Änderungen im Ausgangszustand führen nur zu kleinen Änderungen im Ergebnis.
  • Viele Systeme in der Natur sind labile Gleichgewichtszustände. Hier liegt keine starke Kausalität vor.

Zum Artikel Zu den Aufgaben

Kausalitätsprinzip - Grenzen der NEWTONschen Mechanik

Grundwissen

  • Würde man einen Zustand vollständig kennen, könnte man mit Hilfe der Naturgesetze alle Folgen daraus ableiten.
  • Damit wäre alles Geschehen der Welt unabänderlich bestimmt (Determinismus).
  • Die Quantenmechanik und die Relativitätstheorie machen jedoch die Grenzen des Determinismus deutlich.

Zum Artikel
Grundwissen

  • Würde man einen Zustand vollständig kennen, könnte man mit Hilfe der Naturgesetze alle Folgen daraus ableiten.
  • Damit wäre alles Geschehen der Welt unabänderlich bestimmt (Determinismus).
  • Die Quantenmechanik und die Relativitätstheorie machen jedoch die Grenzen des Determinismus deutlich.

Zum Artikel Zu den Aufgaben

Mondphasen

Grundwissen

  • Die Mondphasen entstehen dadurch, dass sich der Mond um die Erde dreht und je nach Position ein bestimmter Teil seiner Oberfläche Licht in Richtung der Erde reflektiert.
  • Ein Mondphasenzyklus dauert in etwa 29,5 Tage und beinhaltet Neumond, zunehmenden Halbmond, Vollmond und abnehmenden Halbmond.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Mondphasen entstehen dadurch, dass sich der Mond um die Erde dreht und je nach Position ein bestimmter Teil seiner Oberfläche Licht in Richtung der Erde reflektiert.
  • Ein Mondphasenzyklus dauert in etwa 29,5 Tage und beinhaltet Neumond, zunehmenden Halbmond, Vollmond und abnehmenden Halbmond.

Zum Artikel Zu den Aufgaben

Mondfinsternis

Grundwissen

  • Bei einer Mondfinsternis steht die Erde zwischen Sonne und Mond
  • Bei einer Mondfinsternis ist der Mond also im Schatten der Erde

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einer Mondfinsternis steht die Erde zwischen Sonne und Mond
  • Bei einer Mondfinsternis ist der Mond also im Schatten der Erde

Zum Artikel Zu den Aufgaben

Sonnenfinsternis

Grundwissen

  • Bei einer Sonnenfinsternis befindet sich der Mond zwischen Sonne und Erde
  • Man unterscheidet meist zwischen totaler und partieller Sonnenfinsternis
  • Im Kernschatten des Mondes befindet sich immer nur ein kleiner Teil der Erdoberfläche

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einer Sonnenfinsternis befindet sich der Mond zwischen Sonne und Erde
  • Man unterscheidet meist zwischen totaler und partieller Sonnenfinsternis
  • Im Kernschatten des Mondes befindet sich immer nur ein kleiner Teil der Erdoberfläche

Zum Artikel Zu den Aufgaben

Bahnen im Gravitationsfeld

Grundwissen

  • Schießt man auf der Erde von einem hohen Turm einen Körper parallel zur Erdoberfläche ab, so gibt es je nach Abschussgeschwindigkeit \(v\) vier mögliche Bahnkurven.
  • Für kleine \(v\) trifft der Körper die Erde.
  • Wenn \(v\) so groß ist, dass \(F_{\rm{G}}=F_{\rm{Z}}\) gilt, ergibt sich eine Kreisbahn.
  • Bei größerem \(v\) ergeben sich zunächst Ellipsenbahnen und bei \(v>v_{\rm{Flucht}}\) Hyperbelbahnen und der Körper entfernt sich.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Schießt man auf der Erde von einem hohen Turm einen Körper parallel zur Erdoberfläche ab, so gibt es je nach Abschussgeschwindigkeit \(v\) vier mögliche Bahnkurven.
  • Für kleine \(v\) trifft der Körper die Erde.
  • Wenn \(v\) so groß ist, dass \(F_{\rm{G}}=F_{\rm{Z}}\) gilt, ergibt sich eine Kreisbahn.
  • Bei größerem \(v\) ergeben sich zunächst Ellipsenbahnen und bei \(v>v_{\rm{Flucht}}\) Hyperbelbahnen und der Körper entfernt sich.

Zum Artikel Zu den Aufgaben

Beugung und Interferenz - Einführung

Grundwissen

  • Beugung ist die Ablenkung einer Welle an einem Hindernis.
  • Konstruktive Interferenz bedeutet eine Verstärkung.
  • Destruktive Interferenz bedeutet eine Auslöschung.

Zum Artikel
Grundwissen

  • Beugung ist die Ablenkung einer Welle an einem Hindernis.
  • Konstruktive Interferenz bedeutet eine Verstärkung.
  • Destruktive Interferenz bedeutet eine Auslöschung.

Zum Artikel Zu den Aufgaben

Interferenz an dünnen Schichten

Grundwissen

  • Interferenz tritt häufig auch bei der Reflexion an dünnen Schichten auf - daher schimmern Seifenblasen und Ölschichten auf Wasser häufig farbig.
  • Bei der Berechnung muss der Phasensprung bei Reflexion an optisch dichterem Medium berücksichtigt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Interferenz tritt häufig auch bei der Reflexion an dünnen Schichten auf - daher schimmern Seifenblasen und Ölschichten auf Wasser häufig farbig.
  • Bei der Berechnung muss der Phasensprung bei Reflexion an optisch dichterem Medium berücksichtigt werden.

Zum Artikel Zu den Aufgaben

Kennlinien von Widerständen

Grundwissen

  • Die \(U\)-\(I\)-Kennlinie eines Leiters stellt den Zusammenhang zwischen angelegter Spannung \(U\) und sich ergebender Stromstärke \(I\) dar.
  • Die Kennlinien von ohmschen Widerständen sind Ursprungshalbgeraden.
  • Wird die \(U\)-\(I\)-Kennlinie eines Leiters mit zunehmender Spannung flacher, so nimmt der Widerstand des Leiters zu, wird sie steiler, so nimmt sein Widerstand ab.
  • Mit Hilfe der Kennlinie kannst du auch Spannungen und Ströme bei nicht ohmschen Widerständen ermitteln.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die \(U\)-\(I\)-Kennlinie eines Leiters stellt den Zusammenhang zwischen angelegter Spannung \(U\) und sich ergebender Stromstärke \(I\) dar.
  • Die Kennlinien von ohmschen Widerständen sind Ursprungshalbgeraden.
  • Wird die \(U\)-\(I\)-Kennlinie eines Leiters mit zunehmender Spannung flacher, so nimmt der Widerstand des Leiters zu, wird sie steiler, so nimmt sein Widerstand ab.
  • Mit Hilfe der Kennlinie kannst du auch Spannungen und Ströme bei nicht ohmschen Widerständen ermitteln.

Zum Artikel Zu den Aufgaben

Schaltung von Messgeräten

Grundwissen

  • Strommesser werden immer in Reihe geschaltet und müssen einen vernachlässigbaren Innenwiderstand besitzen.
  • Spannungsmesser werden immer parallel zu dem Bauteil geschaltet, dessen Spannung bzw. dessen verursachten Spannungsabfall du messen möchtest.
  • Spannungsmesser besitzen einen möglichst großen Innenwiderstand. 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Strommesser werden immer in Reihe geschaltet und müssen einen vernachlässigbaren Innenwiderstand besitzen.
  • Spannungsmesser werden immer parallel zu dem Bauteil geschaltet, dessen Spannung bzw. dessen verursachten Spannungsabfall du messen möchtest.
  • Spannungsmesser besitzen einen möglichst großen Innenwiderstand. 

Zum Artikel Zu den Aufgaben

Widerstand

Grundwissen

  • Der Widerstand ist der Quotient aus der über dem Leiter abfallenden Spannung und der Stärke des Stroms, die durch den Leiter fließt.
  • Kurz: \(R=\frac{U}{I}\)
  • Die Einheit des elektrischen Widerstands ist \([R]:=1\,\Omega\,(\text{Ohm})\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Widerstand ist der Quotient aus der über dem Leiter abfallenden Spannung und der Stärke des Stroms, die durch den Leiter fließt.
  • Kurz: \(R=\frac{U}{I}\)
  • Die Einheit des elektrischen Widerstands ist \([R]:=1\,\Omega\,(\text{Ohm})\)

Zum Artikel Zu den Aufgaben

Ein- und Ausschalten von RC-Kreisen

Grundwissen

  • Ladung auf dem Kondensator, Strom im Kreis, und die Spannungen über dem Widerstand und dem Kondensator können beim Ein- und Ausschalten mit Exponentialfunktionen beschrieben werden.
  • Für die Halbwertszeit der Größen gilt jeweils \({t_H} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ladung auf dem Kondensator, Strom im Kreis, und die Spannungen über dem Widerstand und dem Kondensator können beim Ein- und Ausschalten mit Exponentialfunktionen beschrieben werden.
  • Für die Halbwertszeit der Größen gilt jeweils \({t_H} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel Zu den Aufgaben

Astronomische Daten unseres Sonnensystems

Grundwissen

  • Zentrale Astronomische Daten wie Bahnradius, Masse, Radius und Fallbeschleunigung von den Planeten unseres Sonnensystems

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zentrale Astronomische Daten wie Bahnradius, Masse, Radius und Fallbeschleunigung von den Planeten unseres Sonnensystems

Zum Artikel Zu den Aufgaben

Spiegelbild - Einführung

Grundwissen

  • Das Spiegelbild befindet sich im gleichen Abstand zum Spiegel wie das Original.
  • Das Spiegelbild ist genau so groß wie das Original.
  • Das Spiegelbild eines Gegenstandes erscheint für alle Betrachter vor dem Spiegel am gleichen Ort hinter dem Spiegel.
  • Gegenstand und Spiegelbild sind symmetrisch zur der Spiegelebene.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Spiegelbild befindet sich im gleichen Abstand zum Spiegel wie das Original.
  • Das Spiegelbild ist genau so groß wie das Original.
  • Das Spiegelbild eines Gegenstandes erscheint für alle Betrachter vor dem Spiegel am gleichen Ort hinter dem Spiegel.
  • Gegenstand und Spiegelbild sind symmetrisch zur der Spiegelebene.

Zum Artikel Zu den Aufgaben

Spiegelbild - Fortführung

Grundwissen

Joachim Herz Stiftung
  • Das Zustandekommen eines Spiegelbildes lässt sich mit dem Reflexionsgesetz erklären.
  • Der Strahlengang zeigt, dass Bild und Spiegelbild den gleichen Abstand zum Spiegel besitzen.
  • Das Spiegelbild ist ein virtuelles Bild, da von dem Ort, an dem man es wahrnimmt, kein Licht ausgeht.
  • Bei der Konstruktion des Spiegelbildes hilft dir die mathematische Achsenspiegelung  (Geradenspiegelung).
 

Zum Artikel Zu den Aufgaben
Grundwissen

Joachim Herz Stiftung
  • Das Zustandekommen eines Spiegelbildes lässt sich mit dem Reflexionsgesetz erklären.
  • Der Strahlengang zeigt, dass Bild und Spiegelbild den gleichen Abstand zum Spiegel besitzen.
  • Das Spiegelbild ist ein virtuelles Bild, da von dem Ort, an dem man es wahrnimmt, kein Licht ausgeht.
  • Bei der Konstruktion des Spiegelbildes hilft dir die mathematische Achsenspiegelung  (Geradenspiegelung).
 

Zum Artikel Zu den Aufgaben

COULOMB-Gesetz

Grundwissen

  • Alle geladenen Körper üben aufeinander Kräfte aus, die man als elektrische Kräfte bezeichnet.
  • Die Richtung dieser Kräfte verläuft auf der Verbindungsgerade der beiden Ladungsschwerpunkte, der Betrag dieser Kräfte ist (wegen des Wechselwirkungsgesetzes) gleich groß.
  • Die Kräfte sind bei gleichartigen Ladungen voneinander weg und bei verschiedenartigen Ladungen aufeinander zu gerichtet.
  • Der Betrag ist proportional zu beiden Ladungen und umgekehrt proportional zum Quadrat des Abstandes der beiden Ladungsschwerpunkte.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Alle geladenen Körper üben aufeinander Kräfte aus, die man als elektrische Kräfte bezeichnet.
  • Die Richtung dieser Kräfte verläuft auf der Verbindungsgerade der beiden Ladungsschwerpunkte, der Betrag dieser Kräfte ist (wegen des Wechselwirkungsgesetzes) gleich groß.
  • Die Kräfte sind bei gleichartigen Ladungen voneinander weg und bei verschiedenartigen Ladungen aufeinander zu gerichtet.
  • Der Betrag ist proportional zu beiden Ladungen und umgekehrt proportional zum Quadrat des Abstandes der beiden Ladungsschwerpunkte.

Zum Artikel Zu den Aufgaben

Linsengleichungen

Grundwissen

  • Die Abbildungsgleichung \(\frac{B}{G} = \frac{b}{g}\) beschreibt den Zusammenhang zwischen Bildgröße \(B\), Gegenstandsgröße \(G\), Bildweite \(b\) und Gegenstandsweite \(g\) bei einer Linsenabbildung.
  • Die Linsengleichung \(\frac{1}{f}=\frac{1}{b}+\frac{1}{g}\) beschreibt den Zusammenhang zwischen Brennweite \(f\), Gegenstandsweite \(g\) und Bildweite \(b\) bei einer Linsenabbildung.
  • Die Linsengleichung kann mithilfe der Hauptstrahlen und des Strahlensatzes hergeleitet werden.
  • Die Linsengleichung gilt sowohl für Sammel- als auch Zerstreuungslinsen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Abbildungsgleichung \(\frac{B}{G} = \frac{b}{g}\) beschreibt den Zusammenhang zwischen Bildgröße \(B\), Gegenstandsgröße \(G\), Bildweite \(b\) und Gegenstandsweite \(g\) bei einer Linsenabbildung.
  • Die Linsengleichung \(\frac{1}{f}=\frac{1}{b}+\frac{1}{g}\) beschreibt den Zusammenhang zwischen Brennweite \(f\), Gegenstandsweite \(g\) und Bildweite \(b\) bei einer Linsenabbildung.
  • Die Linsengleichung kann mithilfe der Hauptstrahlen und des Strahlensatzes hergeleitet werden.
  • Die Linsengleichung gilt sowohl für Sammel- als auch Zerstreuungslinsen.

Zum Artikel Zu den Aufgaben

Stoffverhalten

Grundwissen

  • Absorption - der Gegenstand nimmt das Licht "in sich" auf
  • regelmäßige Reflexion - der Gegenstand reflektiert das Licht in eine bestimmte Richtung
  • Streuung - der Gegenstand streut das Licht in verschiedenste Richtungen
  • Durchlassen des Lichtes (Durchsichtigkeit) - der Gegenstand lässt das Licht unverändert durch sich hindurch.

In der Regel treten mehrere dieser Phänomene gleichzeitig auf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Absorption - der Gegenstand nimmt das Licht "in sich" auf
  • regelmäßige Reflexion - der Gegenstand reflektiert das Licht in eine bestimmte Richtung
  • Streuung - der Gegenstand streut das Licht in verschiedenste Richtungen
  • Durchlassen des Lichtes (Durchsichtigkeit) - der Gegenstand lässt das Licht unverändert durch sich hindurch.

In der Regel treten mehrere dieser Phänomene gleichzeitig auf.

Zum Artikel Zu den Aufgaben

Periodentafel der Elemente

Grundwissen

  • Die Struktur im Periodensystem der Elemente legen Beobachtungen hinsichtlich der Ionisierungsenergie und des Molvolumens nahe.
  • Die Anordnung der Elemente im Periodensystem erfolgt nach ihrer Ordnungszahl (Kernladungszahl) \(Z\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Struktur im Periodensystem der Elemente legen Beobachtungen hinsichtlich der Ionisierungsenergie und des Molvolumens nahe.
  • Die Anordnung der Elemente im Periodensystem erfolgt nach ihrer Ordnungszahl (Kernladungszahl) \(Z\).

Zum Artikel Zu den Aufgaben

Scheinbare Sternhelligkeit

Grundwissen

  • Die scheinbare Helligkeit eines Sternes gibt an, wie hell ein Beobachter auf der Erde den Stern wahrnimmt.
  • Die scheinbare Helligkeit wird in \(\rm{mag}\) (für Magnituden) angegeben. Sterne mit kleineren \(\rm{mag}\)-Werten werden dabei als heller wahrgenommen als Sterne mit größeren \(\rm{mag}\)-Werten.
  • Die Skala der scheinbaren Helligkeiten basiert auf einem logarithmischen Zusammenhang. Als Nullpunkt dient die scheinbare Helligkeit des Sterns Wega.

Zum Artikel
Grundwissen

  • Die scheinbare Helligkeit eines Sternes gibt an, wie hell ein Beobachter auf der Erde den Stern wahrnimmt.
  • Die scheinbare Helligkeit wird in \(\rm{mag}\) (für Magnituden) angegeben. Sterne mit kleineren \(\rm{mag}\)-Werten werden dabei als heller wahrgenommen als Sterne mit größeren \(\rm{mag}\)-Werten.
  • Die Skala der scheinbaren Helligkeiten basiert auf einem logarithmischen Zusammenhang. Als Nullpunkt dient die scheinbare Helligkeit des Sterns Wega.

Zum Artikel Zu den Aufgaben

Masse-Leuchtkraft-Beziehung

Grundwissen

  • Für Hauptreihensterne beobachtet man eine direkte Beziehung zwischen Sternmasse \(M\) und Leuchtkraft \(L\).
  • In erster Näherung gilt: \(L\sim M^3\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für Hauptreihensterne beobachtet man eine direkte Beziehung zwischen Sternmasse \(M\) und Leuchtkraft \(L\).
  • In erster Näherung gilt: \(L\sim M^3\)

Zum Artikel Zu den Aufgaben

Hauptreihenstadium

Grundwissen

  • Im Hauptreihenstadium befinden sich Sterne während des stabilen Wasserstoffbrennens, das etwa \(90\,\%\) der Lebenszeit ausmacht.
  • Mit Wissen über die Masse sowie der Leuchtkraft eines Sterns und der empirischen Masse-Leuchtkraftbeziehung gilt für die Hauptreihenzeit eines Sterns \(t_{\rm{h}}\sim\frac{1}{m^2}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Hauptreihenstadium befinden sich Sterne während des stabilen Wasserstoffbrennens, das etwa \(90\,\%\) der Lebenszeit ausmacht.
  • Mit Wissen über die Masse sowie der Leuchtkraft eines Sterns und der empirischen Masse-Leuchtkraftbeziehung gilt für die Hauptreihenzeit eines Sterns \(t_{\rm{h}}\sim\frac{1}{m^2}\).

Zum Artikel Zu den Aufgaben

Sterngeburt

Grundwissen

  • Gas-, Staub- und Molekülwolken an den Rändern der Spiralarme der Galaxis sind Gebiete der Sternentstehung, da hier interstellare Masse konzentriert ist.
  • Das JEANS-Kriterium besagt, dass eine Gaswolke kollabiert und ein Stern entstehen kann, wenn ihre Masse größer als die JEANS-Masse ist.

Zum Artikel
Grundwissen

  • Gas-, Staub- und Molekülwolken an den Rändern der Spiralarme der Galaxis sind Gebiete der Sternentstehung, da hier interstellare Masse konzentriert ist.
  • Das JEANS-Kriterium besagt, dass eine Gaswolke kollabiert und ein Stern entstehen kann, wenn ihre Masse größer als die JEANS-Masse ist.

Zum Artikel Zu den Aufgaben

Atomaufbau

Grundwissen

  • Modelle über den Atomaufbau haben sich ständig weiterentwickelt.
  • Ein Atom besteht aus einem sehr kleinen Atomkern und einer Hülle.
  • Der Atomkern besteht aus Protonen und Neutronen. In der Atomhülle halten sich die Elektronen auf.
  • Protonen und Neutronen bestehen wiederum jeweils aus drei Quarks.

Zum Artikel
Grundwissen

  • Modelle über den Atomaufbau haben sich ständig weiterentwickelt.
  • Ein Atom besteht aus einem sehr kleinen Atomkern und einer Hülle.
  • Der Atomkern besteht aus Protonen und Neutronen. In der Atomhülle halten sich die Elektronen auf.
  • Protonen und Neutronen bestehen wiederum jeweils aus drei Quarks.

Zum Artikel Zu den Aufgaben

Linearer Potentialtopf

Grundwissen

  • Im Modell des eindimensionalen linearen unendlichen Potentialtopfs ist die potentielle Energie eines Teilchens im Topf Null, an den Rändern unendlich groß.
  • Die Aufenthaltswahrscheinlichkeit des Teilchens am Topfrand ist Null. Die Eigenschwingungen des Teilchens im Potentialtopf sind daher analog zu stehenden Seilwellen an festen Enden.
  • Mit der Beziehung \(\lambda=\frac{h}{p}\) ergibt sich die Gesamtenergie des Teilchens im Potentialtopf zu \({E_{\rm{ges}}} = \frac{{{h^2}}}{{8 \cdot m \cdot {a^2}}} \cdot {n^2}\)
  • Mit \(n\in \left\{ {1\;;\;2\;;\;3\;;\;...} \right\}\) erhält man die verschiedenen Energieniveaus des Elektrons im Potentialtopf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Modell des eindimensionalen linearen unendlichen Potentialtopfs ist die potentielle Energie eines Teilchens im Topf Null, an den Rändern unendlich groß.
  • Die Aufenthaltswahrscheinlichkeit des Teilchens am Topfrand ist Null. Die Eigenschwingungen des Teilchens im Potentialtopf sind daher analog zu stehenden Seilwellen an festen Enden.
  • Mit der Beziehung \(\lambda=\frac{h}{p}\) ergibt sich die Gesamtenergie des Teilchens im Potentialtopf zu \({E_{\rm{ges}}} = \frac{{{h^2}}}{{8 \cdot m \cdot {a^2}}} \cdot {n^2}\)
  • Mit \(n\in \left\{ {1\;;\;2\;;\;3\;;\;...} \right\}\) erhält man die verschiedenen Energieniveaus des Elektrons im Potentialtopf.

Zum Artikel Zu den Aufgaben

Elektrische Stromstärke

Grundwissen

  • Die elektrische Stromstärke, Symbol \(I\), ist ein Maß für die elektrische Ladung, die pro Sekunde durch einen Leiterquerschnitt hindurchfließt.
  • Die Einheit der elektrischen Stromstärke ist das Ampere, Symbol \(\rm{A}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die elektrische Stromstärke, Symbol \(I\), ist ein Maß für die elektrische Ladung, die pro Sekunde durch einen Leiterquerschnitt hindurchfließt.
  • Die Einheit der elektrischen Stromstärke ist das Ampere, Symbol \(\rm{A}\).

Zum Artikel Zu den Aufgaben

Entfernungsbestimmung mit Cepheiden

Grundwissen

  • Cepheiden sind Pulsationsveränderliche - ihre Leuchtkraft bzw. Helligkeit verändert sich streng periodisch.
  • Die Helligkeit hängt bei Cephiden mit der Länge ihrer Periode zusammen (Perioden-Leuchtkraft-Beziehung)
  • Cepheiden dienen zur Entfernungsmessung im Kosmos: aus der Beobachtung der Periodendauer kann man direkt auf die absolute Helligkeit schließen. Durch die Messung der relativen Helligkeit dann mit dem Entfernungsmodul die Entfernung berechnen werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Cepheiden sind Pulsationsveränderliche - ihre Leuchtkraft bzw. Helligkeit verändert sich streng periodisch.
  • Die Helligkeit hängt bei Cephiden mit der Länge ihrer Periode zusammen (Perioden-Leuchtkraft-Beziehung)
  • Cepheiden dienen zur Entfernungsmessung im Kosmos: aus der Beobachtung der Periodendauer kann man direkt auf die absolute Helligkeit schließen. Durch die Messung der relativen Helligkeit dann mit dem Entfernungsmodul die Entfernung berechnen werden.

Zum Artikel Zu den Aufgaben

HUBBLE-Gesetz

Grundwissen

  • Galaxien entfernen sich um so schneller von uns, je weiter die Galaxien von uns weg sind.
  • Der HUBBLE-Parameter gibt die aktuelle Expansionsrate des Universums an und beträgt aktuell etwa \(H_0=70\,\rm{\frac{km}{s\cdot Mpc}}\).
  • Die Expansionsrate des Universums hat aber im Laufe der Zeit zugenommen, sodass die lineare Beziehung  \(z\cdot c=H_0\cdot D\) zwischen Rotverschiebung und Entfernung nur für Rotverschiebungen bis \(z\approx 0{,}1\) gilt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Galaxien entfernen sich um so schneller von uns, je weiter die Galaxien von uns weg sind.
  • Der HUBBLE-Parameter gibt die aktuelle Expansionsrate des Universums an und beträgt aktuell etwa \(H_0=70\,\rm{\frac{km}{s\cdot Mpc}}\).
  • Die Expansionsrate des Universums hat aber im Laufe der Zeit zugenommen, sodass die lineare Beziehung  \(z\cdot c=H_0\cdot D\) zwischen Rotverschiebung und Entfernung nur für Rotverschiebungen bis \(z\approx 0{,}1\) gilt.

Zum Artikel Zu den Aufgaben

Volumen- und Längenänderung von Festkörpern

Grundwissen

  • Festkörper dehnen sich beim Erwärmen i.d.R. in alle Raumrichtung gleichmäßig aus.
  • Bei Festkörpern gibt man oft den Längenausdehnungskoeffizienten \(\alpha\) an.
  • Für die Längenänderung gilt \(\Delta l = \alpha \cdot {l_0} \cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Festkörper dehnen sich beim Erwärmen i.d.R. in alle Raumrichtung gleichmäßig aus.
  • Bei Festkörpern gibt man oft den Längenausdehnungskoeffizienten \(\alpha\) an.
  • Für die Längenänderung gilt \(\Delta l = \alpha \cdot {l_0} \cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben