Direkt zum Inhalt

Grundwissen

Masse-Leuchtkraft-Beziehung

Das Wichtigste auf einen Blick

  • Für Hauptreihensterne beobachtet man eine direkte Beziehung zwischen Sternmasse \(M\) und Leuchtkraft \(L\).
  • In erster Näherung gilt: \(L\sim M^3\)
Aufgaben Aufgaben

 

mass_leucht_fixstern_gru_e_0.gif Joachim Herz Stiftung
Abb. 1 Beobachteter Zusammenhang zwischen Masse und Leuchtkraft von Hauptreihensternen

Vergleicht man bei Sternen oder Doppelsternen der Hauptreihe die Leuchtkraft \(L\) bzw. die absolute Helligkeit und die Masse \(m\) so erhält man den in Abb. 1 skizzierten Zusammenhang.

Im doppelt- logarithmischen Maßstab liegen alle Hauptreihensterne in erster Näherung auf einer Geraden mit der Steigung 3. Hieraus folgt die sog. Masse-Leuchtkraft-Beziehung:\[L\sim m^3\qquad \text{bzw.}\qquad L^{*}=\left(m^{*}\right)^3\] Mithilfe dieser Beziehung kann man nur mithilfe der beobachteten Leuchtkraft die Masse eines Sterns abschätzen.

Physikalische Erklärung:

Eine größere Masse \(m\) benötigt zur Verhinderung des Gravitationskollaps einen höheren Druck. Dieser höhere Druck bewirkt wiederum eine höhere Temperatur \(T\) des Sterns und damit eine größere Leuchtkraft \(L\). Daraus folgt, dass die Hauptreihensterne im Hertzsprung-Russel-Diagramm der Masse nach aufsteigend von rechts unten nach links oben geordnet sind.

Aufgabe

Berechne die Leuchtkraft und die absolute Helligkeit eines Hauptreihensterns der zehnfachen Sonnenmasse.

Lösung

Aus der zehnfachen Masse folgt wegen \(L \sim {m^3}\) die \(1000\)-fache Leuchtkraft, bzw. relative Leuchtkraft \({L^*} = 1000\). Für die absolute Helligkeit gilt:
\[{M_{{\rm{Stern}}}} - {M_{{\rm{Sonne}}}} =- 2{,}5 \cdot \lg \left( {L^*} \right) \Rightarrow {M_{{\rm{Stern}}}} = 4{,}8 - 2{,}5 \cdot \lg \left( {1000} \right) = - 2{,}7\]