Direkt zum Inhalt
Suchergebnisse 181 - 210 von 398

2. Newtonsches Gesetz (Aktionsprinzip)

Grundwissen

  • Wirkt auf einen Körper eine resultierende Kraft \(\vec{F}\), so wird der Körper in die Richtung der Kraft beschleunigt.
  • Es gilt \(\vec{F}=m\cdot \vec{a}=m\cdot \frac{\Delta \vec{v}}{\Delta t}\)
  • Die Einheit der Kraft ist 1 Newton: \(\left[ F \right] = \left[ m \right] \cdot \left[ a \right] = 1\,{\rm{kg}} \cdot 1\,\frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{kg}} \cdot \frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{N}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wirkt auf einen Körper eine resultierende Kraft \(\vec{F}\), so wird der Körper in die Richtung der Kraft beschleunigt.
  • Es gilt \(\vec{F}=m\cdot \vec{a}=m\cdot \frac{\Delta \vec{v}}{\Delta t}\)
  • Die Einheit der Kraft ist 1 Newton: \(\left[ F \right] = \left[ m \right] \cdot \left[ a \right] = 1\,{\rm{kg}} \cdot 1\,\frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{kg}} \cdot \frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{N}}\)

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung von Strömungen

Grundwissen

  • Zentrale Größen zur Beschreibung von Strömungen sind die Geschwindigkeit\(v\), der Druck \(p\), die Dichte \(\rho\), die Temperatur \(T\) und die dynamische Viskosität \(\eta\).

Zum Artikel
Grundwissen

  • Zentrale Größen zur Beschreibung von Strömungen sind die Geschwindigkeit\(v\), der Druck \(p\), die Dichte \(\rho\), die Temperatur \(T\) und die dynamische Viskosität \(\eta\).

Zum Artikel Zu den Aufgaben

Kontinuitätsgleichungen

Grundwissen

  • Die Größe \(\frac{m}{t}=\rho\cdot v\cdot A\) bzw. infinitesimal \(\frac{dm}{dt}=\dot{m}\) bezeichnet man als Massenstrom.
  • Bei einer stationären Strömung ist wegen der Massenerhaltung der Massenstrom \(\dot{m}=\frac{m}{t}=\rho \cdot A \cdot v\) an allen Querschnittsflächen konstant.
  • Bei inkompressiblen Fluiden ist der Massenstrom \(\dot{m}\) proportional zum Volumenstrom \(\dot{V}\). Der Proportionalitätsfaktor ist die Dichte \(\rho\) des inkompressiblen Fluids.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Größe \(\frac{m}{t}=\rho\cdot v\cdot A\) bzw. infinitesimal \(\frac{dm}{dt}=\dot{m}\) bezeichnet man als Massenstrom.
  • Bei einer stationären Strömung ist wegen der Massenerhaltung der Massenstrom \(\dot{m}=\frac{m}{t}=\rho \cdot A \cdot v\) an allen Querschnittsflächen konstant.
  • Bei inkompressiblen Fluiden ist der Massenstrom \(\dot{m}\) proportional zum Volumenstrom \(\dot{V}\). Der Proportionalitätsfaktor ist die Dichte \(\rho\) des inkompressiblen Fluids.

Zum Artikel Zu den Aufgaben

BERNOULLI-Gleichung

Grundwissen

  • Die BERNOULLI-Gleichung liefert einen Zusammenhang zwischen Strömungsgeschwindigkeit \(v\) und Druck \(p\).
  • Die BERNOULLI-Gleichung bei stationärer, verlustfreier Strömung eines inkompressiblen Fluides ist \(\rho \cdot g \cdot h+\frac{1}{2} \cdot \rho \cdot v^2 + p=\rm{konst.}\).
  • Die Summe der potentiellen Energie, der kinetischen Energie und der Druckenergie (also der verrichteten Arbeit) entlang der Stromröhre ist erhalten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die BERNOULLI-Gleichung liefert einen Zusammenhang zwischen Strömungsgeschwindigkeit \(v\) und Druck \(p\).
  • Die BERNOULLI-Gleichung bei stationärer, verlustfreier Strömung eines inkompressiblen Fluides ist \(\rho \cdot g \cdot h+\frac{1}{2} \cdot \rho \cdot v^2 + p=\rm{konst.}\).
  • Die Summe der potentiellen Energie, der kinetischen Energie und der Druckenergie (also der verrichteten Arbeit) entlang der Stromröhre ist erhalten.

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung einer Kreisbewegung

Grundwissen

  • Das (Dreh-)Zentrum \(Z\) ist der Mittelpunkt der Kreisbahn.
  • Der Bahnradius \(r\) ist die (konstant bleibende) Entfernung des Körpers zum Drehzentrum.
  • Die Umlaufdauer \(T\) gibt an, wie lange ein Körper für einen vollständigen Umlauf der Kreisbahn benötigt.
  • Die Frequenz \(f\) ist der Kehrwert der Umlaufdauer: \(f=\frac{1}{T}\). Sie gibt an, wie viele Umläufe ein Körper pro Zeiteinheit absolviert.
  • Mit \(s\) bezeichnen wir die Länge der (Bahn-)Strecke, die der Körper seit dem Start der Kreisbewegung auf der Kreisbahn zurückgelegt hat.
  • Mit \(\varphi\) bezeichnen wir die Weite des Drehwinkels, den der Bahnradius seit dem Start der Kreisbewegung überstrichen hat.
  • Winkel werden bei der Beschreibung von Kreisbewegungen meist im Bogenmaß angegeben. Eine volle Umdrehung von \(360^\circ\) entspricht im Bogenmaß dem Wert \(2\pi\)
  • Es gilt \(s = \varphi  \cdot r \quad {\rm{bzw.}} \quad \varphi  = \frac{s}{r}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das (Dreh-)Zentrum \(Z\) ist der Mittelpunkt der Kreisbahn.
  • Der Bahnradius \(r\) ist die (konstant bleibende) Entfernung des Körpers zum Drehzentrum.
  • Die Umlaufdauer \(T\) gibt an, wie lange ein Körper für einen vollständigen Umlauf der Kreisbahn benötigt.
  • Die Frequenz \(f\) ist der Kehrwert der Umlaufdauer: \(f=\frac{1}{T}\). Sie gibt an, wie viele Umläufe ein Körper pro Zeiteinheit absolviert.
  • Mit \(s\) bezeichnen wir die Länge der (Bahn-)Strecke, die der Körper seit dem Start der Kreisbewegung auf der Kreisbahn zurückgelegt hat.
  • Mit \(\varphi\) bezeichnen wir die Weite des Drehwinkels, den der Bahnradius seit dem Start der Kreisbewegung überstrichen hat.
  • Winkel werden bei der Beschreibung von Kreisbewegungen meist im Bogenmaß angegeben. Eine volle Umdrehung von \(360^\circ\) entspricht im Bogenmaß dem Wert \(2\pi\)
  • Es gilt \(s = \varphi  \cdot r \quad {\rm{bzw.}} \quad \varphi  = \frac{s}{r}\)

Zum Artikel Zu den Aufgaben

Sinken, Schweben, Steigen, Schwimmen

Grundwissen

  • Das Zusammenspiel von Gewichtskraft \(\vec F_{\rm{G}}\) eines Körpers und seiner Auftriebskraft \(\vec F_{\rm{A}}\) im Medium bestimmen, ob der Körper sinkt, schwebt, steigt oder schwimmt.
  • Beim Schwimmen taucht ein Körpers gerade so weit in ein Medium ein, sodass gilt \({F_{\rm{A}}} = {F_{\rm{G}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Zusammenspiel von Gewichtskraft \(\vec F_{\rm{G}}\) eines Körpers und seiner Auftriebskraft \(\vec F_{\rm{A}}\) im Medium bestimmen, ob der Körper sinkt, schwebt, steigt oder schwimmt.
  • Beim Schwimmen taucht ein Körpers gerade so weit in ein Medium ein, sodass gilt \({F_{\rm{A}}} = {F_{\rm{G}}}\).

Zum Artikel Zu den Aufgaben

Wiegen im Weltall mittels SLAMMD

Ausblick
Ausblick

Theoretische Herleitung der Formel für die potentielle Energie

Ausblick

  • Um einen Körper der Masse \(m\) an einem Ort mit dem Ortsfaktor \(g\) vom Nullniveau Erdboden auf eine Höhe \(h\) anzuheben benötigt man die Arbeit \(W=m \cdot g \cdot h\).
  • Damit beträgt die potentielle Energie \(E_{\rm{pot}}\) des Systems "Erde-Körper" nach dem Anheben \(E_{\rm{pot}}=m \cdot g \cdot h\).

Zum Artikel Zu den Aufgaben
Ausblick

  • Um einen Körper der Masse \(m\) an einem Ort mit dem Ortsfaktor \(g\) vom Nullniveau Erdboden auf eine Höhe \(h\) anzuheben benötigt man die Arbeit \(W=m \cdot g \cdot h\).
  • Damit beträgt die potentielle Energie \(E_{\rm{pot}}\) des Systems "Erde-Körper" nach dem Anheben \(E_{\rm{pot}}=m \cdot g \cdot h\).

Zum Artikel Zu den Aufgaben

Theoretische Herleitung der Formel für die kinetische Energie

Ausblick

  • Um einen Körper der Masse \(m\) aus der Ruhe auf eine Geschwindigkeit \(v\) zu beschleunigen benötigt man die Arbeit \(W= \frac{1}{2} \cdot m \cdot v^2\).
  • Damit beträgt die kinetische Energie \(E_{\rm{kin}}\) eines Körpers nach dem Beschleunigen \(E_{\rm{kin}}=\frac{1}{2} \cdot m \cdot v^2\).

Zum Artikel Zu den Aufgaben
Ausblick

  • Um einen Körper der Masse \(m\) aus der Ruhe auf eine Geschwindigkeit \(v\) zu beschleunigen benötigt man die Arbeit \(W= \frac{1}{2} \cdot m \cdot v^2\).
  • Damit beträgt die kinetische Energie \(E_{\rm{kin}}\) eines Körpers nach dem Beschleunigen \(E_{\rm{kin}}=\frac{1}{2} \cdot m \cdot v^2\).

Zum Artikel Zu den Aufgaben

Theoretische Herleitung der Formel für die Spannenergie

Ausblick

  • Um eine Feder mit der Federkonstante \(D\) um eine Strecke der Länge \(s\) zu spannen benötigt man die Arbeit \(W= \frac{1}{2} \cdot D \cdot s^2\).
  • Damit beträgt die Spannenergie \(E_{\rm{Spann}}\) einer Feder nach dem Spannen \(E_{\rm{Spann}}=\frac{1}{2} \cdot D \cdot s^2\).

Zum Artikel Zu den Aufgaben
Ausblick

  • Um eine Feder mit der Federkonstante \(D\) um eine Strecke der Länge \(s\) zu spannen benötigt man die Arbeit \(W= \frac{1}{2} \cdot D \cdot s^2\).
  • Damit beträgt die Spannenergie \(E_{\rm{Spann}}\) einer Feder nach dem Spannen \(E_{\rm{Spann}}=\frac{1}{2} \cdot D \cdot s^2\).

Zum Artikel Zu den Aufgaben

Kräfte beim Fadenpendel

Ausblick

  • Die rücktreibende Kraft beim Fadenpendel kann auch über die Addition verschiedener Kräfte erklärt werden.
  • Man kann die Kräfte sowohl aus einem ruhenden als auch aus einem mitbewegtem Bezugssystem betrachten.
  • Dabei spielen neben der Gewichts- und der Fadenkraft auch noch die Zentripetal- bzw. die Zentrifugalkraft eine Rolle.

Zum Artikel
Ausblick

  • Die rücktreibende Kraft beim Fadenpendel kann auch über die Addition verschiedener Kräfte erklärt werden.
  • Man kann die Kräfte sowohl aus einem ruhenden als auch aus einem mitbewegtem Bezugssystem betrachten.
  • Dabei spielen neben der Gewichts- und der Fadenkraft auch noch die Zentripetal- bzw. die Zentrifugalkraft eine Rolle.

Zum Artikel Zu den Aufgaben

Federpendel stark gedämpft - aperiodischer Grenzfall (Theorie)

Ausblick

  • Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel
Ausblick

  • Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel Zu den Aufgaben

Federpendel stark gedämpft - Kriechfall (Theorie)

Ausblick

  • Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{D}{m}}\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel
Ausblick

  • Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{D}{m}}\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel Zu den Aufgaben

Fall mit STOKES-Reibung (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der Fall eines Körpers mit STOKES-Reibung mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der Fall eines Körpers mit STOKES-Reibung mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Fall mit NEWTON-Reibung (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der Fall eines Körpers mit NEWTON-Reibung mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der Fall eines Körpers mit NEWTON-Reibung mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Erklärung des Fliegens

Ausblick
Ausblick

Dynamische Kraftmessung zur Definition der Maßeinheit Newton

Ausblick
Ausblick

NEWTONs Herleitung des Gravitationsgesetzes

Ausblick
Ausblick

Fakirs Nagelbrett

Ausblick
Ausblick

Geräte zur Längenmessung

Ausblick
Ausblick

Dichten verschiedener Stoffe

Ausblick
Ausblick

Wenn Gläser zerspringen

Ausblick
Ausblick

Verschiedene Wirkungsgrade

Ausblick
Ausblick