Direkt zum Inhalt
Suchergebnisse 151 - 180 von 2328

Erklärquiz: Spezifischer Widerstand

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Elektrische Kraft

Grundwissen

  • Elektrisch geladene Körper üben aufeinander Kräfte aus. Diese Kräfte nennen wir elektrische Kräfte und bezeichnen sie mit \(\vec F_{\rm{el}}\).
  • Sind zwei Körper gleichartig geladen, also entweder beide positiv oder beide negativ, dann stoßen sich die Körper gegenseitig ab.
  • Sind die Körper dagegen verschiedenartig geladen, also einer positiv und einer negativ, dann ziehen sich die Körper gegenseitig an.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Elektrisch geladene Körper üben aufeinander Kräfte aus. Diese Kräfte nennen wir elektrische Kräfte und bezeichnen sie mit \(\vec F_{\rm{el}}\).
  • Sind zwei Körper gleichartig geladen, also entweder beide positiv oder beide negativ, dann stoßen sich die Körper gegenseitig ab.
  • Sind die Körper dagegen verschiedenartig geladen, also einer positiv und einer negativ, dann ziehen sich die Körper gegenseitig an.

Zum Artikel Zu den Aufgaben

Elektrische Ladung und die Einheit Coulomb

Grundwissen

  • Ist ein Körper elektrisch neutral, dann befinden sich in und auf ihm gleich viele Protonen und Elektronen.
  • Ist ein Körper negativ geladen, dann befinden sich in und auf ihm mehr Elektronen als Protonen.
  • Ist ein Körper positiv geladen, dann befinden sich in und auf ihm mehr Protonen als Elektronen (besser: weniger Elektronen als Protonen).
  • Das Formelzeichen für die elektrische Ladung ist \(q\) oder \(Q\), die Maßeinheit der elektrischen Ladung ist \(1\,\rm{C}\) (Coulomb).

Zum Artikel
Grundwissen

  • Ist ein Körper elektrisch neutral, dann befinden sich in und auf ihm gleich viele Protonen und Elektronen.
  • Ist ein Körper negativ geladen, dann befinden sich in und auf ihm mehr Elektronen als Protonen.
  • Ist ein Körper positiv geladen, dann befinden sich in und auf ihm mehr Protonen als Elektronen (besser: weniger Elektronen als Protonen).
  • Das Formelzeichen für die elektrische Ladung ist \(q\) oder \(Q\), die Maßeinheit der elektrischen Ladung ist \(1\,\rm{C}\) (Coulomb).

Zum Artikel Zu den Aufgaben

Quiz zur elektrischen Kraft

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Erklärquiz: Experimentelle Bestimmung des spezifischen Widerstands

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Unterschied zwischen Masse und Gewichtskraft

Aufgabe ( Übungsaufgaben )
Aufgabe ( Übungsaufgaben )

Welche Schlepper schleppen am stärksten?

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Philipp Rösch Abb. 1 Skizze der Auswahl der verschiedenen Schlepper-KombinationenEin Frachtschiff hat beim…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Philipp Rösch Abb. 1 Skizze der Auswahl der verschiedenen Schlepper-KombinationenEin Frachtschiff hat beim…

Zur Aufgabe

Quiz zur Gegenüberstellung von fortschreitenden und stehenden Wellen

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Aufstellen der Wellenfunktion 1

Aufgabe ( Übungsaufgaben )

Eine Transversalwelle breitet sich in Richtung der positiven \(x\)-Achse ungedämpft mit der Geschwindigkeit \(3{,}0\,\frac{\rm{m}}{\rm{s}}\) aus. Die…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Eine Transversalwelle breitet sich in Richtung der positiven \(x\)-Achse ungedämpft mit der Geschwindigkeit \(3{,}0\,\frac{\rm{m}}{\rm{s}}\) aus. Die…

Zur Aufgabe

Aufstellen der Wellenfunktion 2

Aufgabe ( Übungsaufgaben )

Eine Transversalwelle breitet sich in Richtung der positiven \(x\)-Achse mit der Geschwindigkeit \(5{,}0\,\frac{\rm{m}}{\rm{s}}\) ungedämpft aus. Ihre…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Eine Transversalwelle breitet sich in Richtung der positiven \(x\)-Achse mit der Geschwindigkeit \(5{,}0\,\frac{\rm{m}}{\rm{s}}\) ungedämpft aus. Ihre…

Zur Aufgabe

Erzeugung einer stehenden Welle 1

Aufgabe ( Übungsaufgaben )

Auf einem \(14\,\rm{m}\) langen linearen Wellenträger breiten sich mechanische Querwellen mit einer Geschwindigkeit von…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Auf einem \(14\,\rm{m}\) langen linearen Wellenträger breiten sich mechanische Querwellen mit einer Geschwindigkeit von…

Zur Aufgabe

Erzeugung einer stehenden Welle 2

Aufgabe ( Übungsaufgaben )

Auf einem \(14\,\rm{m}\) langen linearen Wellenträger breiten sich mechanische Querwellen mit einer Geschwindigkeit von…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Auf einem \(14\,\rm{m}\) langen linearen Wellenträger breiten sich mechanische Querwellen mit einer Geschwindigkeit von…

Zur Aufgabe

Stehende Welle auf einem Draht

Aufgabe ( Übungsaufgaben )

Ein Draht wird auf die Länge \(6{,}0\,\rm{m}\) ausgezogen und an beiden Enden fest eingespannt. Durch Erregung mit der Frequenz \(2{,}5\,\rm{Hz}\)…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Ein Draht wird auf die Länge \(6{,}0\,\rm{m}\) ausgezogen und an beiden Enden fest eingespannt. Durch Erregung mit der Frequenz \(2{,}5\,\rm{Hz}\)…

Zur Aufgabe

Spannung einer Stahlsaite

Aufgabe ( Übungsaufgaben )

Eine an beiden Enden eingespannte Stahlsaite (Dichte von Stahl: \(\rho = 7{,}86 \cdot 10^3\,\frac{\rm{kg}}{\rm{m}^3}\)) hat eine Länge von…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Eine an beiden Enden eingespannte Stahlsaite (Dichte von Stahl: \(\rho = 7{,}86 \cdot 10^3\,\frac{\rm{kg}}{\rm{m}^3}\)) hat eine Länge von…

Zur Aufgabe

Stehende Wellen - Typen

Grundwissen

  • Stehende Wellen mit zwei festen Enden beschreiben u.a. das Schwingen von Saiten.
  • Stehende Wellen mit zwei losen Enden beschreiben u.a. die Tonerzeugung von Blockflöten und offenen Orgelpfeifen
  • Stehende Wellen mit einem festen und einem losen Ende beschreiben u.a. die Tonerzeugung von Panflöten und gedeckten Orgelpfeifen

Zum Artikel Zu den Aufgaben
Grundwissen

  • Stehende Wellen mit zwei festen Enden beschreiben u.a. das Schwingen von Saiten.
  • Stehende Wellen mit zwei losen Enden beschreiben u.a. die Tonerzeugung von Blockflöten und offenen Orgelpfeifen
  • Stehende Wellen mit einem festen und einem losen Ende beschreiben u.a. die Tonerzeugung von Panflöten und gedeckten Orgelpfeifen

Zum Artikel Zu den Aufgaben

Stehende Schallwelle

Aufgabe ( Übungsaufgaben )

In einem geschlossenen Glaszylinder wird eine stehende Schallwelle der Frequenz \(f = 4{,}4\,\rm{kHz}\) durch Reflexion an festen Enden erzeugt. Die…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

In einem geschlossenen Glaszylinder wird eine stehende Schallwelle der Frequenz \(f = 4{,}4\,\rm{kHz}\) durch Reflexion an festen Enden erzeugt. Die…

Zur Aufgabe

Verkürzen einer Saite

Aufgabe ( Übungsaufgaben )

Kürzt man bei gleichbleibender Spannung eine Saite der Länge \(L\) um \(\Delta L = 10\,\rm{cm}\), so erhöht sich die Grundfrequenz \(f\) auf das…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Kürzt man bei gleichbleibender Spannung eine Saite der Länge \(L\) um \(\Delta L = 10\,\rm{cm}\), so erhöht sich die Grundfrequenz \(f\) auf das…

Zur Aufgabe

Erzeugung einer stehenden Welle 3

Aufgabe ( Übungsaufgaben )

Auf einem \(14\,\rm{m}\) langen linearen Wellenträger breiten sich mechanische Querwellen mit einer Geschwindigkeit von…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Auf einem \(14\,\rm{m}\) langen linearen Wellenträger breiten sich mechanische Querwellen mit einer Geschwindigkeit von…

Zur Aufgabe

Erzeugung einer stehenden Welle 4

Aufgabe ( Übungsaufgaben )

Auf einem \(14\,\rm{m}\) langen linearen Wellenträger breiten sich mechanische Querwellen mit einer Geschwindigkeit von…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Auf einem \(14\,\rm{m}\) langen linearen Wellenträger breiten sich mechanische Querwellen mit einer Geschwindigkeit von…

Zur Aufgabe

Aufstellen der Wellenfunktion 3

Aufgabe ( Übungsaufgaben )

Im Nullpunkt eines Koordinatensystems startet vom Zeitpunkt \(0\,{\rm{s}}\) an eine Schwingung statt, die durch den Term \(y(t) = 0{,}08\,{\rm{m}}…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Im Nullpunkt eines Koordinatensystems startet vom Zeitpunkt \(0\,{\rm{s}}\) an eine Schwingung statt, die durch den Term \(y(t) = 0{,}08\,{\rm{m}}…

Zur Aufgabe

Schwingender Eisenstab

Aufgabe ( Übungsaufgaben )

Ein in der Mitte eingespannter Eisenstab von \(1{,}00\,\rm{m}\) Länge wird in der Grundschwingung zum Tönen gebracht. Die Schallgeschwindigkeit in…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Ein in der Mitte eingespannter Eisenstab von \(1{,}00\,\rm{m}\) Länge wird in der Grundschwingung zum Tönen gebracht. Die Schallgeschwindigkeit in…

Zur Aufgabe

Füllen eines Glaszylinders

Aufgabe ( Übungsaufgaben )

Über die obere Öffnung eines unten geschlossenen Glaszylinders von einigen Zentimetern Durchmesser wird ein Lautsprecher gehalten, der einen Ton mit…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Über die obere Öffnung eines unten geschlossenen Glaszylinders von einigen Zentimetern Durchmesser wird ein Lautsprecher gehalten, der einen Ton mit…

Zur Aufgabe

Schallgeschwindigkeit in Erdgas

Aufgabe ( Übungsaufgaben )

In einem KUNDTschen Rohr (Glasrohr mit einem offenen und einem geschlossenen Ende) werden am offenen Ende mit einem Lautsprecher mit einer konstanten…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

In einem KUNDTschen Rohr (Glasrohr mit einem offenen und einem geschlossenen Ende) werden am offenen Ende mit einem Lautsprecher mit einer konstanten…

Zur Aufgabe

Schallgeschwindigkeit in Kupfer

Aufgabe ( Übungsaufgaben )

Ein Kupferstab von \(56\,\rm{cm}\) Länge wird in seiner Mitte fest eingeklemmt. Durch Reiben in seiner Längsrichtung wird er zum Schwingen angeregt,…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Ein Kupferstab von \(56\,\rm{cm}\) Länge wird in seiner Mitte fest eingeklemmt. Durch Reiben in seiner Längsrichtung wird er zum Schwingen angeregt,…

Zur Aufgabe

Schallgeschwindigkeit in Stahl

Aufgabe ( Übungsaufgaben )

Ein Stahlstab von \(60{,}0\,\rm{cm}\) Länge wird an seinen Enden fest eingeklemmt. Durch Reiben in seiner Längsrichtung wird er zum Schwingen…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Ein Stahlstab von \(60{,}0\,\rm{cm}\) Länge wird an seinen Enden fest eingeklemmt. Durch Reiben in seiner Längsrichtung wird er zum Schwingen…

Zur Aufgabe

Aufstellen der Wellenfunktion 4

Aufgabe ( Übungsaufgaben )

Eine harmonische Schwingung mit dem Zeit-Elongation-Term \(y(t) = 1{,}0 \cdot 10^{ - 2}\,{\rm{m}} \cdot \sin \left( \frac{0{,}5\,\pi }{{\rm{s}}} …

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Eine harmonische Schwingung mit dem Zeit-Elongation-Term \(y(t) = 1{,}0 \cdot 10^{ - 2}\,{\rm{m}} \cdot \sin \left( \frac{0{,}5\,\pi }{{\rm{s}}} …

Zur Aufgabe

Reflexion mit der Slinky-Feder

Versuche

  • Mit einer Slinky-Feder kannst du die Reflexion von Transversal- und von Longitudinalwellen an festen und an losen Enden demonstrieren.

Zum Artikel
Versuche

  • Mit einer Slinky-Feder kannst du die Reflexion von Transversal- und von Longitudinalwellen an festen und an losen Enden demonstrieren.

Zum Artikel Zu den Aufgaben

Transmission und Reflexion

Grundwissen

  • Beim Übergang einer Welle vom dünneren zum dichteren Medium läuft die ursprüngliche Welle mit kleinerer Amplitude und kleinerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei wird ein Wellenberg zu einem Wellental und ein Wellental zu einem Wellenberg (Reflexion am festen Ende, Phasensprung von \(\pi\)).
  • Beim Übergang einer Welle vom dichteren zum dünneren Medium  läuft die ursprüngliche Welle mit veränderter Amplitude und größerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei bleibt ein Wellenberg ein Wellenberg und ein  Wellental ein Wellental (Reflexion am losen Ende, kein Phasensprung).

Zum Artikel
Grundwissen

  • Beim Übergang einer Welle vom dünneren zum dichteren Medium läuft die ursprüngliche Welle mit kleinerer Amplitude und kleinerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei wird ein Wellenberg zu einem Wellental und ein Wellental zu einem Wellenberg (Reflexion am festen Ende, Phasensprung von \(\pi\)).
  • Beim Übergang einer Welle vom dichteren zum dünneren Medium  läuft die ursprüngliche Welle mit veränderter Amplitude und größerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei bleibt ein Wellenberg ein Wellenberg und ein  Wellental ein Wellental (Reflexion am losen Ende, kein Phasensprung).

Zum Artikel Zu den Aufgaben

Rund um den geschlossenen Stromkreis

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Rund um die Ein-Aus-Schaltung

Aufgabe ( Quiz )
Aufgabe ( Quiz )