Direkt zum Inhalt
Suchergebnisse 151 - 180 von 740

Video zur Spule im Gleich- und Wechselstromkreis

Weblink

Dieses Video zeigt, wie sich eine Spule in einem Gleich- und in einem Wechselstromkreis verhält. Zur Illustration der Wirkung, werden Glühlampen und ein parallel geschalteter Widerstand benutzt. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zum externen Weblink
Weblink

Dieses Video zeigt, wie sich eine Spule in einem Gleich- und in einem Wechselstromkreis verhält. Zur Illustration der Wirkung, werden Glühlampen und ein parallel geschalteter Widerstand benutzt. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zum externen Weblink

Elektrische Kraft im homogenen elektrischen Feld (Simulation mit Versuchsanleitung)

Versuche

Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Kraft auf eine Ladung im homogenen elektrischen Feld von den relevanten Parametern.

Zum Artikel Zu den Aufgaben
Versuche

Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Kraft auf eine Ladung im homogenen elektrischen Feld von den relevanten Parametern.

Zum Artikel Zu den Aufgaben

Elektrische Kraft im radialsymmetrischen elektrischen Feld (Simulation mit Versuchsanleitung)

Versuche

Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Kraft auf eine Ladung im radialsymmetrischen elektrischen Feld von den relevanten Parametern.

Zum Artikel Zu den Aufgaben
Versuche

Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Kraft auf eine Ladung im radialsymmetrischen elektrischen Feld von den relevanten Parametern.

Zum Artikel Zu den Aufgaben

Influenz und Polarisation

Grundwissen

  • Eine Folge der Kraftwirkung zwischen elektrischen Ladungen ist die Influenz.
  • In elektrischen Leitern bewirkt die Influenz eine Trennung von positiven und negativen Ladungen.
  • In Isolatoren bewirkt die Influenz eine Verschiebung von positiven und negativen Ladungen gegeneinander. Dies nennt man Polarisation.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Eine Folge der Kraftwirkung zwischen elektrischen Ladungen ist die Influenz.
  • In elektrischen Leitern bewirkt die Influenz eine Trennung von positiven und negativen Ladungen.
  • In Isolatoren bewirkt die Influenz eine Verschiebung von positiven und negativen Ladungen gegeneinander. Dies nennt man Polarisation.

Zum Artikel Zu den Aufgaben

I-U-Kennlinien

Ausblick

  • Kennlinien von Leitern können auch als \(I\)-\(U\)-Kennlinie dargestellt werden.
  • Hier entspricht die Steigung des Graphen gerade dem Widerstand \(R\).
  • Bei einem OHMschen Widerstand ist der Proportionalitätsfaktor des \(I\)-\(U\)-Diagramms gerade sein Widerstand \(R\).

Zum Artikel
Ausblick

  • Kennlinien von Leitern können auch als \(I\)-\(U\)-Kennlinie dargestellt werden.
  • Hier entspricht die Steigung des Graphen gerade dem Widerstand \(R\).
  • Bei einem OHMschen Widerstand ist der Proportionalitätsfaktor des \(I\)-\(U\)-Diagramms gerade sein Widerstand \(R\).

Zum Artikel Zu den Aufgaben

Elektrische Kraft

Grundwissen

  • Elektrisch geladene Körper üben aufeinander Kräfte aus. Diese Kräfte nennen wir elektrische Kräfte und bezeichnen sie mit \(\vec F_{\rm{el}}\).
  • Sind zwei Körper gleichartig geladen, also entweder beide positiv oder beide negativ, dann stoßen sich die Körper gegenseitig ab.
  • Sind die Körper dagegen verschiedenartig geladen, also einer positiv und einer negativ, dann ziehen sich die Körper gegenseitig an.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Elektrisch geladene Körper üben aufeinander Kräfte aus. Diese Kräfte nennen wir elektrische Kräfte und bezeichnen sie mit \(\vec F_{\rm{el}}\).
  • Sind zwei Körper gleichartig geladen, also entweder beide positiv oder beide negativ, dann stoßen sich die Körper gegenseitig ab.
  • Sind die Körper dagegen verschiedenartig geladen, also einer positiv und einer negativ, dann ziehen sich die Körper gegenseitig an.

Zum Artikel Zu den Aufgaben

Elektrische Ladung und die Einheit Coulomb

Grundwissen

  • Ist ein Körper elektrisch neutral, dann befinden sich in und auf ihm gleich viele Protonen und Elektronen.
  • Ist ein Körper negativ geladen, dann befinden sich in und auf ihm mehr Elektronen als Protonen.
  • Ist ein Körper positiv geladen, dann befinden sich in und auf ihm mehr Protonen als Elektronen (besser: weniger Elektronen als Protonen).
  • Das Formelzeichen für die elektrische Ladung ist \(q\) oder \(Q\), die Maßeinheit der elektrischen Ladung ist \(1\,\rm{C}\) (Coulomb).

Zum Artikel
Grundwissen

  • Ist ein Körper elektrisch neutral, dann befinden sich in und auf ihm gleich viele Protonen und Elektronen.
  • Ist ein Körper negativ geladen, dann befinden sich in und auf ihm mehr Elektronen als Protonen.
  • Ist ein Körper positiv geladen, dann befinden sich in und auf ihm mehr Protonen als Elektronen (besser: weniger Elektronen als Protonen).
  • Das Formelzeichen für die elektrische Ladung ist \(q\) oder \(Q\), die Maßeinheit der elektrischen Ladung ist \(1\,\rm{C}\) (Coulomb).

Zum Artikel Zu den Aufgaben

MILLIKAN-Versuch - Schwebe-Fall-Methode ohne CUNNINGHAM-Korrektur (Simulation)

Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben
Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben

MILLIKAN-Versuch - Steige-Fall-Methode ohne CUNNINGHAM-Korrektur (Simulation)

Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben
Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben

MILLIKAN-Versuch - Steige-Sink-Methode ohne CUNNINGHAM-Korrektur (Simulation)

Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben
Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben

Magnetische Flussdichte und die Maßeinheit Tesla

Grundwissen

  • Befindet sich ein gerader Leiter der Länge \(l\), der von einem Strom der Stärke \(I\) durchflossen wird, senkrecht zu den Feldlinien in einem magnetischen Feld, und wirkt auf diesen Leiter eine magnetische Kraft vom Betrag \(F_{\rm{mag}}\), dann definieren wir die magnetische Flussdichte \(B\) des magnetischen Feldes am Ort des Leiters durch \(B := \frac{F_{\rm{mag}}}{l \cdot I}\).
  • Die magnetische Flussdichte \(B\) ist ein Maß für "die Stärke" eines magnetischen Feldes.
  • Das Formelzeichen für die magnetische Flussdichte ist \(B\), die Maßeinheit der magnetischen Flussdichte ist \(1\,\rm{T}\) (Tesla).

Zum Artikel
Grundwissen

  • Befindet sich ein gerader Leiter der Länge \(l\), der von einem Strom der Stärke \(I\) durchflossen wird, senkrecht zu den Feldlinien in einem magnetischen Feld, und wirkt auf diesen Leiter eine magnetische Kraft vom Betrag \(F_{\rm{mag}}\), dann definieren wir die magnetische Flussdichte \(B\) des magnetischen Feldes am Ort des Leiters durch \(B := \frac{F_{\rm{mag}}}{l \cdot I}\).
  • Die magnetische Flussdichte \(B\) ist ein Maß für "die Stärke" eines magnetischen Feldes.
  • Das Formelzeichen für die magnetische Flussdichte ist \(B\), die Maßeinheit der magnetischen Flussdichte ist \(1\,\rm{T}\) (Tesla).

Zum Artikel Zu den Aufgaben

Magnetfeld von langen Zylinderspulen (qualitativ)

Versuche

  • Demonstration des Magnetfelds (insbesonder im Innenraum) von langen Zylinderspulen

Zum Artikel
Versuche

  • Demonstration des Magnetfelds (insbesonder im Innenraum) von langen Zylinderspulen

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis stark gedämpft - aperiodischer Grenzfall (Theorie)

Ausblick

  • Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
  • Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\) und \(\delta = \frac{R}{2 \cdot L}\)

Zum Artikel
Ausblick

  • Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
  • Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\) und \(\delta = \frac{R}{2 \cdot L}\)

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis stark gedämpft - Kriechfall (Theorie)

Ausblick

  • Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
  • Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{1}{L \cdot C}}\) und \(\delta = \frac{R}{2 \cdot L}\)

Zum Artikel
Ausblick

  • Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
  • Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{1}{L \cdot C}}\) und \(\delta = \frac{R}{2 \cdot L}\)

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis ungedämpft (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der ungedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der ungedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis gedämpft (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der gedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der gedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Aufladen eines Kondensators (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Aufladen eines Kondensators mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Aufladen eines Kondensators mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Entladen eines Kondensators (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Entladen eines Kondensators mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Entladen eines Kondensators mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Einschalten eines Stromkreises mit einer Spule (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Einschalten eines Stromkreises mit einer Spule mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Einschalten eines Stromkreises mit einer Spule mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Ausschalten eines Stromkreises mit einer Spule (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Ausschalten eines Stromkreises mit einer Spule mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Ausschalten eines Stromkreises mit einer Spule mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

\(\frac{e}{m_{\rm{e}}}\)-Bestimmung mit dem WIENschen Geschwindigkeitsfilter

Versuche

  • Bestimmung der spezifischen Ladung \(\frac{e}{m_{\rm{e}}}\) von Elektronen mit einem WIENschen Geschwindigkeitsfilter

Zum Artikel
Versuche

  • Bestimmung der spezifischen Ladung \(\frac{e}{m_{\rm{e}}}\) von Elektronen mit einem WIENschen Geschwindigkeitsfilter

Zum Artikel Zu den Aufgaben

Potentiometerschaltung unbelastet (Simulation)

Versuche
Versuche

Lernaufgabe: Energiekosten im Alltag - Was kostet das, wenn …?

Weblink

Diese Lernaufgabe der iMINT-Akademie Berlin zum übergreifenden Thema „Verbraucherbildung“ beschäftigt sich mit den Energiekosten beim Gebrauch von elektrischen Geräten und soll einen Beitrag zur Entwicklung der Schülerinnen und Schüler hin zu einem verantwortungsvollen Umgang mit Ressourcen leisten.
Zur Erarbeitung des Themas stehen verschiedene Material- und Hilfekarten zur Verfügung. Als Lernprodukt entsteht ein Lernplakat.
Die Lernaufgabe orientiert sich an den Standards der iMINT-Akademie Berlin. Sie bietet den Schülerinnen und Schülern vielseitige Zugänge, beachtet sprachsensible Aspekte, schafft Raum für forschend-entdeckendes, individualisiertes Lernen, enthält Schülerexperimente und nutzt mediale IT-Unterstützung für flexible, individualisierte Lernansätze.
Dieses OER-Material und weiteres Material der iMINT-Akademie Berlin gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik-1

Zum externen Weblink
Weblink

Diese Lernaufgabe der iMINT-Akademie Berlin zum übergreifenden Thema „Verbraucherbildung“ beschäftigt sich mit den Energiekosten beim Gebrauch von elektrischen Geräten und soll einen Beitrag zur Entwicklung der Schülerinnen und Schüler hin zu einem verantwortungsvollen Umgang mit Ressourcen leisten.
Zur Erarbeitung des Themas stehen verschiedene Material- und Hilfekarten zur Verfügung. Als Lernprodukt entsteht ein Lernplakat.
Die Lernaufgabe orientiert sich an den Standards der iMINT-Akademie Berlin. Sie bietet den Schülerinnen und Schülern vielseitige Zugänge, beachtet sprachsensible Aspekte, schafft Raum für forschend-entdeckendes, individualisiertes Lernen, enthält Schülerexperimente und nutzt mediale IT-Unterstützung für flexible, individualisierte Lernansätze.
Dieses OER-Material und weiteres Material der iMINT-Akademie Berlin gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik-1

Zum externen Weblink

Lernaufgabe: Das Haus der Lampen

Weblink

Wo soll welche Lampe hin?
In dieser Lernaufgabe der iMINT-Akademie Berlin zum fächerübergreifenden Thema „Verbraucherbildung“ werden verschiedene Lampentypen hinsichtlich der Kriterien Kosteneffizienz, Energieeffizienz und Nachhaltigkeit untersucht.
Hierzu werden den Lernenden Experimente, Diagramme, vergleichende Tabellen und weitere Informationen zur Verfügung gestellt. Als Lernprodukt werden verschiedene Lampentypen in einem vorgegebenen Haus kriterienorientiert verteilt.
Diese Lernaufgabe bietet den Schülerinnen und Schülern vielseitige Zugänge, beachtet sprachsensible Aspekte, schafft Raum für forschend-entdeckendes Lernen, enthält Schülerexperimente und nutzt mediale IT-Unterstützung für flexible, individualisierte Lernansätze.
Dieses OER-Material und weiteres Material der iMINT-Akademie Berlin gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik-1

Zum externen Weblink
Weblink

Wo soll welche Lampe hin?
In dieser Lernaufgabe der iMINT-Akademie Berlin zum fächerübergreifenden Thema „Verbraucherbildung“ werden verschiedene Lampentypen hinsichtlich der Kriterien Kosteneffizienz, Energieeffizienz und Nachhaltigkeit untersucht.
Hierzu werden den Lernenden Experimente, Diagramme, vergleichende Tabellen und weitere Informationen zur Verfügung gestellt. Als Lernprodukt werden verschiedene Lampentypen in einem vorgegebenen Haus kriterienorientiert verteilt.
Diese Lernaufgabe bietet den Schülerinnen und Schülern vielseitige Zugänge, beachtet sprachsensible Aspekte, schafft Raum für forschend-entdeckendes Lernen, enthält Schülerexperimente und nutzt mediale IT-Unterstützung für flexible, individualisierte Lernansätze.
Dieses OER-Material und weiteres Material der iMINT-Akademie Berlin gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik-1

Zum externen Weblink

Lernaufgabe: Kontaktloser Strom

Weblink

Diese Lernaufgabe der iMINT-Akademie Berlin wird aus dem fachübergreifenden Thema „Verbraucherbildung“ entwickelt. Das drahtlose Aufladen von Smartphones und Zahnbürsten beruht auf der elektromagnetischen Induktion und findet sich häufig im Lebensalltag der Schülerinnen und Schüler. Eine Serie von kostengünstigen und minimalistischen Freihandexperimenten eröffnet individualisierte Zugänge für ein Erkunden und Beschreiben von Einflussfaktoren der Induktion.
Dieses OER-Material und weiteres Material der iMINT-Akademie Berlin gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik-1

Zum externen Weblink
Weblink

Diese Lernaufgabe der iMINT-Akademie Berlin wird aus dem fachübergreifenden Thema „Verbraucherbildung“ entwickelt. Das drahtlose Aufladen von Smartphones und Zahnbürsten beruht auf der elektromagnetischen Induktion und findet sich häufig im Lebensalltag der Schülerinnen und Schüler. Eine Serie von kostengünstigen und minimalistischen Freihandexperimenten eröffnet individualisierte Zugänge für ein Erkunden und Beschreiben von Einflussfaktoren der Induktion.
Dieses OER-Material und weiteres Material der iMINT-Akademie Berlin gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik-1

Zum externen Weblink

Lernaufgabe für digitale Spannungssensoren: Der Weidezaun

Weblink

10000 V am Weidezaun – Warum stirbt die Kuh nicht? Diese Lernaufgabe der iMINT-Akademie Berlin ist speziell für den Einsatz von digitalen Spannungssensoren entwickelt worden. Die Schülerinnen und Schüler untersuchen und erklären den sehr kurzen Spannungsstoß an einer Weidezaun-Schaltung und bewerten die Gefahr für Mensch und Tier.
Dieses OER-Material und weiteres Material der iMINT-Akademie Berlin gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik-1

Zum externen Weblink
Weblink

10000 V am Weidezaun – Warum stirbt die Kuh nicht? Diese Lernaufgabe der iMINT-Akademie Berlin ist speziell für den Einsatz von digitalen Spannungssensoren entwickelt worden. Die Schülerinnen und Schüler untersuchen und erklären den sehr kurzen Spannungsstoß an einer Weidezaun-Schaltung und bewerten die Gefahr für Mensch und Tier.
Dieses OER-Material und weiteres Material der iMINT-Akademie Berlin gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik-1

Zum externen Weblink

Lernaufgabe für digitale Spannungssensoren: Superkondensatoren in Elektroautos

Weblink

Superkondensatoren in Elektroautos als Alternative zu herkömmlichen Lithium-Ionen-Akkus? Diese Lernaufgabe der iMINT-Akademie Berlin ist speziell für den Einsatz von digitalen Spannungssensoren entwickelt worden. Die Schülerinnen und Schüler messen die Entladekurve von Superkondensatoren und diskutieren/bewerten kriterienorientiert diese Möglichkeit der Energiespeicherung.
Dieses OER-Material und weiteres Material der iMINT-Akademie Berlin gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik-1

Zum externen Weblink
Weblink

Superkondensatoren in Elektroautos als Alternative zu herkömmlichen Lithium-Ionen-Akkus? Diese Lernaufgabe der iMINT-Akademie Berlin ist speziell für den Einsatz von digitalen Spannungssensoren entwickelt worden. Die Schülerinnen und Schüler messen die Entladekurve von Superkondensatoren und diskutieren/bewerten kriterienorientiert diese Möglichkeit der Energiespeicherung.
Dieses OER-Material und weiteres Material der iMINT-Akademie Berlin gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik-1

Zum externen Weblink

Lernaufgabe für digitale Magnetfeldsensoren: Magnetische Datenspeicherung

Weblink

Wie werden Daten magnetisch gespeichert? Diese Lernaufgabe der iMINT-Akademie Berlin ist speziell für den Einsatz von digitalen Magnetfeldsensoren entwickelt worden. Die Schülerinnen und Schüler fertigen selbstständig ein Funktionsmodell eines magnetischen Datenspeichers und lesen mithilfe eines Sensors gespeicherte Daten aus.
Dieses OER-Material und weiteres Material der iMINT-Akademie Berlin gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik-1

Zum externen Weblink
Weblink

Wie werden Daten magnetisch gespeichert? Diese Lernaufgabe der iMINT-Akademie Berlin ist speziell für den Einsatz von digitalen Magnetfeldsensoren entwickelt worden. Die Schülerinnen und Schüler fertigen selbstständig ein Funktionsmodell eines magnetischen Datenspeichers und lesen mithilfe eines Sensors gespeicherte Daten aus.
Dieses OER-Material und weiteres Material der iMINT-Akademie Berlin gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik-1

Zum externen Weblink

Lernaufgabe für digitale Magnetfeldsensoren: Gefährliche Magnetfelder!?

Weblink

Sind Magnetfelder eigentlich gefährlich? Diese Lernaufgabe der iMINT-Akademie Berlin ist speziell für den Einsatz von digitalen Magnetfeldsensoren entwickelt worden. Die Schülerinnen und Schüler erkunden und messen die Stärke der Magnetfelder von Alltagsgegenständen und beurteilen mithilfe verschiedener Materialien mögliche Gefahren.
Dieses OER-Material und weiteres Material der iMINT-Akademie Berlin gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik-1

Zum externen Weblink
Weblink

Sind Magnetfelder eigentlich gefährlich? Diese Lernaufgabe der iMINT-Akademie Berlin ist speziell für den Einsatz von digitalen Magnetfeldsensoren entwickelt worden. Die Schülerinnen und Schüler erkunden und messen die Stärke der Magnetfelder von Alltagsgegenständen und beurteilen mithilfe verschiedener Materialien mögliche Gefahren.
Dieses OER-Material und weiteres Material der iMINT-Akademie Berlin gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik-1

Zum externen Weblink

OHMscher Leiter im Wechselstromkreis

Grundwissen

  • Bei sinusförmigen Stromstärken und Spannungen gilt für den Wechselstromwiderstand eines OHMschen Leiters \(X_R = R\)
  • Es gibt keine Phasenverschiebung der Spannung, die über dem OHMschen Leiter abfällt, gegenüber der Stromstärke: \(\Delta \varphi  =  0\). Dies wird oft so formuliert, dass die Spannung und die Stromstärke "in Phase sind."

Zum Artikel
Grundwissen

  • Bei sinusförmigen Stromstärken und Spannungen gilt für den Wechselstromwiderstand eines OHMschen Leiters \(X_R = R\)
  • Es gibt keine Phasenverschiebung der Spannung, die über dem OHMschen Leiter abfällt, gegenüber der Stromstärke: \(\Delta \varphi  =  0\). Dies wird oft so formuliert, dass die Spannung und die Stromstärke "in Phase sind."

Zum Artikel Zu den Aufgaben