Direkt zum Inhalt
Suchergebnisse 181 - 210 von 215

Doppelspaltversuch von JÖNSSON

Versuche

  • Nachweis der Welleneigenschaften von Elektronen

Zum Artikel
Versuche

  • Nachweis der Welleneigenschaften von Elektronen

Zum Artikel Zu den Aufgaben

Versuche von HALLWACHS mit dem Elektroskop

Versuche

  • Der Versuch zeigt den prinzipiellen Photoeffekt sowie die Abhängigkeit des Elektronenaustritts von Frequenz und Intensität des Lichts anhand der Beobachtung des Ausschlags eines Elektroskops

Zum Artikel
Versuche

  • Der Versuch zeigt den prinzipiellen Photoeffekt sowie die Abhängigkeit des Elektronenaustritts von Frequenz und Intensität des Lichts anhand der Beobachtung des Ausschlags eines Elektroskops

Zum Artikel Zu den Aufgaben

\(h\)-Bestimmung mit der Gegenfeldmethode

Versuche
Versuche

\(h\)-Bestimmung mit LEDs

Versuche
Versuche

Versuch von MÖLLENSTEDT und DÜKER

Versuche
Versuche

Rubinlaser

Ausblick
Ausblick

Helium-Neon-Laser

Grundwissen

  • Neon-Atome sind das laseraktive Medium
  • Am Prozess sind vier Energieniveaus beteiligt - es ist ein "Vier-Niveau-System"
  • Helium-Neon-Laser emittiert rotes Licht der Wellenlänge \(\lambda=633\,\rm{nm}\)

Zum Artikel
Grundwissen

  • Neon-Atome sind das laseraktive Medium
  • Am Prozess sind vier Energieniveaus beteiligt - es ist ein "Vier-Niveau-System"
  • Helium-Neon-Laser emittiert rotes Licht der Wellenlänge \(\lambda=633\,\rm{nm}\)

Zum Artikel Zu den Aufgaben

Resonanzabsorption und Resonanzfluoreszenz bei Molekülen (Simulation von PhET)

Versuche

  • Darstellung der quantenhaften Absorption von Photonen durch Moleküle
  • Darstellung der unterschiedlichen Anregungsformen der Moleküle bis hin zur Ionisation
  • Darstellung der Übereinstimmung der Energie der absorbierten und der emittierten Photonen

Zum Artikel
Versuche

  • Darstellung der quantenhaften Absorption von Photonen durch Moleküle
  • Darstellung der unterschiedlichen Anregungsformen der Moleküle bis hin zur Ionisation
  • Darstellung der Übereinstimmung der Energie der absorbierten und der emittierten Photonen

Zum Artikel Zu den Aufgaben

Kalium-40 in Lebensmitteln

Versuche

  • Demonstration der ionisierenden Strahlung von von Kalium-40 Isotopen in Lebensmitteln

Zum Artikel
Versuche

  • Demonstration der ionisierenden Strahlung von von Kalium-40 Isotopen in Lebensmitteln

Zum Artikel Zu den Aufgaben

Dosimetrie und Dosiseinheiten

Grundwissen

Zur Beschreibung der biologischen Wirkung von ionisierender Strahlung führt man den Begriff der Dosis ein. Dabei unterscheidet man verschiedene Dosisarten.

  • Die Energiedosis \(D\), die ein Körper durch ionisierende Strahlung erhält, ist der Quotient aus der von dem Körper absorbierten Strahlungsenergie \(E\) und der Masse \(m\) des Körpers: \(D=\frac{E}{m}\). Die Energiedosis ist Grundlage der Dosimetrie im Strahlenschutz.
  • Die Ionendosis \(J\), die ein Körper durch ionisierende Strahlung erhält, ist der Quotient aus der durch Ionisation in dem Körper freiwerdenen elektrischen Ladung \(Q\) gleichen Vorzeichens und der Masse \(m\) des Körpers: \(J=\frac{Q}{m}\).
  • Die Äquivalentdosis \(H\), die ein Körper durch eine Energiedosis einer bestimmten Strahlung erhält, ist das Produkt aus der Energiedosis \(D\) und dem Strahlungswichtungsfaktor \(w_{\rm{R}}\) der Strahlung: \(H=w_{\rm{R}} \cdot D\).
  • Die effektive Dosis \(E\), die ein Organ/Gewebe durch eine Äquivalentdosis erhält, ist das Produkt aus der Äquivalentdosis \(H\) und dem Gewebewichtungsfaktor \(w_{\rm{T}}\) des absorbierenden Organs/Gewebes: \(E=w_{\rm{T}} \cdot H\).

Zum Artikel Zu den Aufgaben
Grundwissen

Zur Beschreibung der biologischen Wirkung von ionisierender Strahlung führt man den Begriff der Dosis ein. Dabei unterscheidet man verschiedene Dosisarten.

  • Die Energiedosis \(D\), die ein Körper durch ionisierende Strahlung erhält, ist der Quotient aus der von dem Körper absorbierten Strahlungsenergie \(E\) und der Masse \(m\) des Körpers: \(D=\frac{E}{m}\). Die Energiedosis ist Grundlage der Dosimetrie im Strahlenschutz.
  • Die Ionendosis \(J\), die ein Körper durch ionisierende Strahlung erhält, ist der Quotient aus der durch Ionisation in dem Körper freiwerdenen elektrischen Ladung \(Q\) gleichen Vorzeichens und der Masse \(m\) des Körpers: \(J=\frac{Q}{m}\).
  • Die Äquivalentdosis \(H\), die ein Körper durch eine Energiedosis einer bestimmten Strahlung erhält, ist das Produkt aus der Energiedosis \(D\) und dem Strahlungswichtungsfaktor \(w_{\rm{R}}\) der Strahlung: \(H=w_{\rm{R}} \cdot D\).
  • Die effektive Dosis \(E\), die ein Organ/Gewebe durch eine Äquivalentdosis erhält, ist das Produkt aus der Äquivalentdosis \(H\) und dem Gewebewichtungsfaktor \(w_{\rm{T}}\) des absorbierenden Organs/Gewebes: \(E=w_{\rm{T}} \cdot H\).

Zum Artikel Zu den Aufgaben

Linearer Potentialtopf - Schrödingergleichung

Ausblick

  • Eine Lösung der zeitabhängigen Schrödigergleichung mit Schulmathematik ist kaum möglich.
  • Die zeitunabhängige, eindimensionale Schrödingergleichung kann am Modell des linearen Potentialtopfs mathematisch hergeleitet werden.
  • Wichtig ist dabei der Einbezug der Randbedingungen.

Zum Artikel
Ausblick

  • Eine Lösung der zeitabhängigen Schrödigergleichung mit Schulmathematik ist kaum möglich.
  • Die zeitunabhängige, eindimensionale Schrödingergleichung kann am Modell des linearen Potentialtopfs mathematisch hergeleitet werden.
  • Wichtig ist dabei der Einbezug der Randbedingungen.

Zum Artikel Zu den Aufgaben

Reaktorkatastrophe von Tschernobyl

Ausblick
Ausblick

Energiezustände im BOHRschen Atommodell

Grundwissen

  • Durch die Quantenbedingung von BOHR kann die Energie eines Atoms nur bestimmte Werte annehmen.
  • Die Energie, um Wasserstoff aus dem Grundzustand heraus zu ionisieren beträgt \(13{,}6\,\rm{eV}\) (Ionisierungsenergie).
  • Die Gesamtenergie eines Elektrons im Wasserstoffatom gilt \({E_{{\rm{ges}}{\rm{,n}}}} = - R_{\infty} \cdot h \cdot c \cdot \frac{1}{{{n^2}}}\), wobei \(R_{\infty}\) die Rydberg-Konstante ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Durch die Quantenbedingung von BOHR kann die Energie eines Atoms nur bestimmte Werte annehmen.
  • Die Energie, um Wasserstoff aus dem Grundzustand heraus zu ionisieren beträgt \(13{,}6\,\rm{eV}\) (Ionisierungsenergie).
  • Die Gesamtenergie eines Elektrons im Wasserstoffatom gilt \({E_{{\rm{ges}}{\rm{,n}}}} = - R_{\infty} \cdot h \cdot c \cdot \frac{1}{{{n^2}}}\), wobei \(R_{\infty}\) die Rydberg-Konstante ist.

Zum Artikel Zu den Aufgaben

Leuchtdioden (LED) - Fortführung

Ausblick
Ausblick

Geschwindigkeitsaddition

Grundwissen

  • Ist \(u\) die Geschwindigkeit eines Körpers im System S und \(v\) die Geschwindigkeit des Systems S' in Bezug auf S und \(u'\) die Geschwindigkeit des Körpers im System S', dann gilt der Zusammenhang \(u = \frac{{u' + v}}{{1 + \frac{{u' \cdot v}}{{{c^2}}}}}\).

 

 

 

Zum Artikel
Grundwissen

  • Ist \(u\) die Geschwindigkeit eines Körpers im System S und \(v\) die Geschwindigkeit des Systems S' in Bezug auf S und \(u'\) die Geschwindigkeit des Körpers im System S', dann gilt der Zusammenhang \(u = \frac{{u' + v}}{{1 + \frac{{u' \cdot v}}{{{c^2}}}}}\).

 

 

 

Zum Artikel Zu den Aufgaben

Einstein zum Photoeffekt

Geschichte
Geschichte

Louis De BROGLIE (1892 - 1987)

Geschichte
Geschichte

Werner HEISENBERG (1901 -1976)

Geschichte
Geschichte

Quiz zum COMPTON-Effekt

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zum Kernaufbau von Atomen

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zur Kernumwandlung

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Wesenszug 4: Komplementarität

Grundwissen

  • Bei einer Ortsmessung auf Höhe der Spalte bildet sich beim Doppelspaltexperiment kein Interferenzmuster auf dem Schirm aus.
  • Interferenzmuster und Unterscheidbarkeit der klassisch denkbaren Möglichkeiten schließen sich aus (Komplementarität).

Zum Artikel
Grundwissen

  • Bei einer Ortsmessung auf Höhe der Spalte bildet sich beim Doppelspaltexperiment kein Interferenzmuster auf dem Schirm aus.
  • Interferenzmuster und Unterscheidbarkeit der klassisch denkbaren Möglichkeiten schließen sich aus (Komplementarität).

Zum Artikel Zu den Aufgaben

Brennstäbe (Abitur BY 2019 Ph12-1 A1)

Aufgabe ( Übungsaufgaben )

Die in Kernkraftwerken eingesetzten Brennstäbe sind dünnwandige Rohre, die kleine Uran-Pellets enthalten. Ein frisches Uran-Pellet der Masse…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Die in Kernkraftwerken eingesetzten Brennstäbe sind dünnwandige Rohre, die kleine Uran-Pellets enthalten. Ein frisches Uran-Pellet der Masse…

Zur Aufgabe