Direkt zum Inhalt
Suchergebnisse 31 - 57 von 57

Heimversuche zum Luftdruck

Versuche
Versuche

Luftdruck nach TORRICELLI

Versuche
Versuche

Hebelversuche

Versuche

  • Entwicklung des Hebelgesetzes am zweiseitigen Hebel
  • Entwicklung bzw. Bestätigung des Hebelgesetzes am einseitigen Hebel

Zum Artikel
Versuche

  • Entwicklung des Hebelgesetzes am zweiseitigen Hebel
  • Entwicklung bzw. Bestätigung des Hebelgesetzes am einseitigen Hebel

Zum Artikel Zu den Aufgaben

Feder-Schwere-Pendel (Smartphone-Experiment mit phyphox)

Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause die Bewegung eines Feder-Schwere-Pendels untersuchen. Die App auf deinem Smartphone bestimmt dabei die Periodendauer \(T\) bzw. die Frequenz \(f\) des Feder-Schwere-Pendels. So kannst du untersuchen, ob und wie die Periodendauer von

  • der Anfangsauslenkung \(y_0\)
  • der Federkonstante (Federhärte) \(D\)
  • der Masse \(m\) des Pendelkörpers

und eventuell noch anderen Größen abhängt.

Zum Artikel
Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause die Bewegung eines Feder-Schwere-Pendels untersuchen. Die App auf deinem Smartphone bestimmt dabei die Periodendauer \(T\) bzw. die Frequenz \(f\) des Feder-Schwere-Pendels. So kannst du untersuchen, ob und wie die Periodendauer von

  • der Anfangsauslenkung \(y_0\)
  • der Federkonstante (Federhärte) \(D\)
  • der Masse \(m\) des Pendelkörpers

und eventuell noch anderen Größen abhängt.

Zum Artikel Zu den Aufgaben

Feder-Schwere-Pendel für Fortgeschrittene (Smartphone-Experiment mit phyphox)

Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause den Zusammenhang \(T = 2 \cdot \pi \cdot \sqrt {\frac{m}{D}} \) zwischen der Schwingungsdauer \(T\), der Masse \(m\) des Pendelkörpers und der Federkonstanten \(D\) eines Federpendels experimentell bestätigen. Die App auf deinem Smartphone bestimmt dabei die Schwingungsdauer \(T\) bzw. die Frequenz \(f\).

Zum Artikel
Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause den Zusammenhang \(T = 2 \cdot \pi \cdot \sqrt {\frac{m}{D}} \) zwischen der Schwingungsdauer \(T\), der Masse \(m\) des Pendelkörpers und der Federkonstanten \(D\) eines Federpendels experimentell bestätigen. Die App auf deinem Smartphone bestimmt dabei die Schwingungsdauer \(T\) bzw. die Frequenz \(f\).

Zum Artikel Zu den Aufgaben

Fadenpendel (Smartphone-Experiment mit phyphox)

Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause die Bewegung eines Fadenpendels untersuchen. Die App auf deinem Smartphone bestimmt dabei die Periodendauer \(T\) bzw. die Frequenz \(f\) des Fadenpendels. So kannst du untersuchen, ob und wie die Periodendauer von

  • der Anfangsauslenkung \(x_0\)
  • der Fadenlänge \(l\)
  • der Masse \(m\) des Pendelkörpers

und eventuell noch anderen Größen abhängt.

Zum Artikel
Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause die Bewegung eines Fadenpendels untersuchen. Die App auf deinem Smartphone bestimmt dabei die Periodendauer \(T\) bzw. die Frequenz \(f\) des Fadenpendels. So kannst du untersuchen, ob und wie die Periodendauer von

  • der Anfangsauslenkung \(x_0\)
  • der Fadenlänge \(l\)
  • der Masse \(m\) des Pendelkörpers

und eventuell noch anderen Größen abhängt.

Zum Artikel Zu den Aufgaben

Feder-Schwere-Pendel für Experten (Smartphone-Experiment mit phyphox)

Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause die Abhängigkeit der Schwingungsdauer \(T\) von der Masse \(m\) des Pendelkörpers und der Federkonstanten \(D\) eines Feder-Schwere-Pendels experimentell entwickeln. Die App auf deinem Smartphone bestimmt dabei die Schwingungsdauer \(T\) bzw. die Frequenz \(f\).

Zum Artikel
Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause die Abhängigkeit der Schwingungsdauer \(T\) von der Masse \(m\) des Pendelkörpers und der Federkonstanten \(D\) eines Feder-Schwere-Pendels experimentell entwickeln. Die App auf deinem Smartphone bestimmt dabei die Schwingungsdauer \(T\) bzw. die Frequenz \(f\).

Zum Artikel Zu den Aufgaben

Fadenpendel für Fortgeschrittene (Smartphone-Experiment mit phyphox)

Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause den Zusammenhang \(T = 2 \cdot \pi \cdot \sqrt {\frac{l}{g}} \) zwischen der Schwingungsdauer \(T\), der Fadenlänge \(l\) und dem Ortsfaktor \(g\) experimentell bestätigen. Die App auf deinem Smartphone bestimmt dabei die Schwingungsdauer \(T\) bzw. die Frequenz \(f\).

Zum Artikel
Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause den Zusammenhang \(T = 2 \cdot \pi \cdot \sqrt {\frac{l}{g}} \) zwischen der Schwingungsdauer \(T\), der Fadenlänge \(l\) und dem Ortsfaktor \(g\) experimentell bestätigen. Die App auf deinem Smartphone bestimmt dabei die Schwingungsdauer \(T\) bzw. die Frequenz \(f\).

Zum Artikel Zu den Aufgaben

Fadenpendel für Experten (Smartphone-Experiment mit phyphox)

Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause die Abhängigkeit der Schwingungsdauer \(T\) von der Fadenlänge \(l\) eines Fadenpendels experimentell entwickeln. Die App auf deinem Smartphone bestimmt dabei die Schwingungsdauer \(T\) bzw. die Frequenz \(f\).

Zum Artikel
Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause die Abhängigkeit der Schwingungsdauer \(T\) von der Fadenlänge \(l\) eines Fadenpendels experimentell entwickeln. Die App auf deinem Smartphone bestimmt dabei die Schwingungsdauer \(T\) bzw. die Frequenz \(f\).

Zum Artikel Zu den Aufgaben

Gleichförmige Bewegung (Smartphone-Experiment mit phyphox)

Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause Bewegungen z.B. gleichförmige Bewegungen von Körpern untersuchen. Die App auf deinem Smartphone zeigt dir dazu Diagramme, in denen der zurückgelegte Weg \(s\)  und die Geschwindigkeit \(v\) des Körpers in Abhängigkeit von der Zeit \(t \) dargestellt sind. So kannst du untersuchen, wie sich diese beiden Diagramme für verschiedene gleichförmige Bewegungen verändern.

Zum Artikel
Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause Bewegungen z.B. gleichförmige Bewegungen von Körpern untersuchen. Die App auf deinem Smartphone zeigt dir dazu Diagramme, in denen der zurückgelegte Weg \(s\)  und die Geschwindigkeit \(v\) des Körpers in Abhängigkeit von der Zeit \(t \) dargestellt sind. So kannst du untersuchen, wie sich diese beiden Diagramme für verschiedene gleichförmige Bewegungen verändern.

Zum Artikel Zu den Aufgaben

Gleichmäßig beschleunigte Bewegung (Smartphone-Experiment mit phyphox)

Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause Bewegungen z.B. gleichmäßig beschleunigte Bewegungen von Körpern untersuchen. Die App auf deinem Smartphone zeigt dir dazu Diagramme, in denen der zurückgelegte Weg \(s\)  und die Geschwindigkeit \(v\) des Körpers in Abhängigkeit von der Zeit \(t \) dargestellt sind. So kannst du untersuchen, wie sich diese beiden Diagramme für verschiedene gleichmäßig beschleunigte Bewegungen verändern.

Zum Artikel
Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause Bewegungen z.B. gleichmäßig beschleunigte Bewegungen von Körpern untersuchen. Die App auf deinem Smartphone zeigt dir dazu Diagramme, in denen der zurückgelegte Weg \(s\)  und die Geschwindigkeit \(v\) des Körpers in Abhängigkeit von der Zeit \(t \) dargestellt sind. So kannst du untersuchen, wie sich diese beiden Diagramme für verschiedene gleichmäßig beschleunigte Bewegungen verändern.

Zum Artikel Zu den Aufgaben

Implodierende Dose

Versuche

  • Qualitative Demonstration der Stärke des Luftdruckes

Zum Artikel
Versuche

  • Qualitative Demonstration der Stärke des Luftdruckes

Zum Artikel Zu den Aufgaben

Fadenpendel (Simulation von PhET)

Versuche
Versuche

Projektilbewegung (Simulation von PhET)

Versuche
Versuche

Freier Fall (Smartphone-Experiment mit phyphox)

Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause die Fallbeschleunigung bestimmen. Die App auf deinem Smartphone bestimmt dabei die Zeitspanne \(t\), die ein Körper für den Fall aus einer bestimmten Höhe \(h\) benötigt. Hieraus lässt sich dann die Fallbeschleunigung \(g\) berechnen.

Zum Artikel
Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause die Fallbeschleunigung bestimmen. Die App auf deinem Smartphone bestimmt dabei die Zeitspanne \(t\), die ein Körper für den Fall aus einer bestimmten Höhe \(h\) benötigt. Hieraus lässt sich dann die Fallbeschleunigung \(g\) berechnen.

Zum Artikel Zu den Aufgaben

Freier Fall für Fortgeschrittene (Smartphone-Experiment mit phyphox)

Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause die Fallbeschleunigung bestimmen. Die App auf deinem Smartphone bestimmt dabei die Zeitspanne \(t\), die ein Körper für den Fall aus einer bestimmten Höhe \(h\) benötigt. Hieraus lässt sich dann die Fallbeschleunigung \(g\) berechnen.

Zum Artikel
Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause die Fallbeschleunigung bestimmen. Die App auf deinem Smartphone bestimmt dabei die Zeitspanne \(t\), die ein Körper für den Fall aus einer bestimmten Höhe \(h\) benötigt. Hieraus lässt sich dann die Fallbeschleunigung \(g\) berechnen.

Zum Artikel Zu den Aufgaben

Freier Fall für Experten (Smartphone-Experiment mit phyphox)

Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause den freien Fall untersuchen und die Fallbeschleunigung bestimmen. Die App auf deinem Smartphone bestimmt dabei die Zeitspanne \(t\), die ein Körper für den Fall aus einer bestimmten Höhe \(h\) benötigt. Hieraus lässt sich dann die Fallbeschleunigung \(g\) berechnen.

Zum Artikel
Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause den freien Fall untersuchen und die Fallbeschleunigung bestimmen. Die App auf deinem Smartphone bestimmt dabei die Zeitspanne \(t\), die ein Körper für den Fall aus einer bestimmten Höhe \(h\) benötigt. Hieraus lässt sich dann die Fallbeschleunigung \(g\) berechnen.

Zum Artikel Zu den Aufgaben

Kombination der Kennlinienfelder des Transistors

Versuche
Versuche

Freier Fall in Vakuum und Luft

Versuche
Versuche

Kreisbahn einer rotierenden Masse

Versuche

  • Veranschaulichung des Zusammenhangs von Winkelgeschwindigkeit und Bahnradius bei konstanter Zentripetalkraft.
  • Übertrag der qualitativen Versuchsergebnisse auf Anwendungen wie Kurvenfahrt oder Satellitenbahn.

Zum Artikel
Versuche

  • Veranschaulichung des Zusammenhangs von Winkelgeschwindigkeit und Bahnradius bei konstanter Zentripetalkraft.
  • Übertrag der qualitativen Versuchsergebnisse auf Anwendungen wie Kurvenfahrt oder Satellitenbahn.

Zum Artikel Zu den Aufgaben

Druckwaage

Versuche

  • Einführung des Druckbegriffes über den Quotienten von Kraft und Masse.

Zum Artikel
Versuche

  • Einführung des Druckbegriffes über den Quotienten von Kraft und Masse.

Zum Artikel Zu den Aufgaben

Massen und Federn (Simulation von PhET)

Versuche
Versuche

Wechselwirkungskräfte mit Sensoren

Versuche

Der Versuch veranschaulicht in Diagrammform, dass Wechselwirkungskräfte immer gleich groß, aber entgegengesetzt gerichtet sind.

Zum Artikel
Versuche

Der Versuch veranschaulicht in Diagrammform, dass Wechselwirkungskräfte immer gleich groß, aber entgegengesetzt gerichtet sind.

Zum Artikel Zu den Aufgaben

Hookesches Gesetz (Demonstrationsexperiment)

Versuche

  • Visualisierung des proportionalen Zusammenhangs von Dehnung und Kraft
  • Interpretation der Geradensteigung als Federkonstante \(D\)
  • Grafische Versuchsauswertung für zwei verschiedene Federn

Zum Artikel
Versuche

  • Visualisierung des proportionalen Zusammenhangs von Dehnung und Kraft
  • Interpretation der Geradensteigung als Federkonstante \(D\)
  • Grafische Versuchsauswertung für zwei verschiedene Federn

Zum Artikel Zu den Aufgaben

Hookesches Gesetz bei Gummis

Versuche

  • Aufnahme eines Dehnungs-Kraft-Diagramms bei einem Gummi.
  • Untersuchung der Anwendbarkeit des Hookeschen Gesetzes.

Zum Artikel
Versuche

  • Aufnahme eines Dehnungs-Kraft-Diagramms bei einem Gummi.
  • Untersuchung der Anwendbarkeit des Hookeschen Gesetzes.

Zum Artikel Zu den Aufgaben