Direkt zum Inhalt
Suchergebnisse 181 - 210 von 270

Schweredruck

Grundwissen

  • Als Schweredruck bezeichnet man einen Druck, den ein Körper nur auf Grund der Gewichtskraft der über ihm liegenden Flüssigkeits- oder Gassäule erfährt.
  • Für den Schweredruck gilt \({p = \rho \cdot g \cdot h}\).
  • Der Schweredruck ist unabhängig von Form und Querschnittsfläche der Flüssigkeitssäule.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Schweredruck bezeichnet man einen Druck, den ein Körper nur auf Grund der Gewichtskraft der über ihm liegenden Flüssigkeits- oder Gassäule erfährt.
  • Für den Schweredruck gilt \({p = \rho \cdot g \cdot h}\).
  • Der Schweredruck ist unabhängig von Form und Querschnittsfläche der Flüssigkeitssäule.

Zum Artikel Zu den Aufgaben

Gesetz von HOOKE

Grundwissen

  • Das HOOKEsche Gesetz beschreibt die Wirkung einer Kraft auf elastische Körper wie Federn.
  • Die Federkonstante (Federhärte) wird mit \(D\) bezeichnet.
  • Es gilt \(F=D\cdot \Delta x\) mit der Längenänderung der \(\Delta x\) der Feder.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das HOOKEsche Gesetz beschreibt die Wirkung einer Kraft auf elastische Körper wie Federn.
  • Die Federkonstante (Federhärte) wird mit \(D\) bezeichnet.
  • Es gilt \(F=D\cdot \Delta x\) mit der Längenänderung der \(\Delta x\) der Feder.

Zum Artikel Zu den Aufgaben

Umrechnen von Einheiten der Kraft

Grundwissen

  • Physikalische Größen bestehen immer aus Zahlenwert (Maßzahl) und Einheit.
  • Verschiedene Einheiten der Kraft kannst du ineinander umrechnen.

Zum Artikel
Grundwissen

  • Physikalische Größen bestehen immer aus Zahlenwert (Maßzahl) und Einheit.
  • Verschiedene Einheiten der Kraft kannst du ineinander umrechnen.

Zum Artikel Zu den Aufgaben

Umstellen einer Gleichung

Grundwissen

  • Formeln musst du manchmal umstellen, um die gesuchte Größe berechnen zu können.
  • Hilfreich als Merkregel ist dabei das entsprechende Größendreieck.

Zum Artikel
Grundwissen

  • Formeln musst du manchmal umstellen, um die gesuchte Größe berechnen zu können.
  • Hilfreich als Merkregel ist dabei das entsprechende Größendreieck.

Zum Artikel Zu den Aufgaben

Impuls und Impulserhaltungssatz

Grundwissen

  • Der Impuls ist das Produkt von Masse und Geschwindigkeit eines Körpers: \(\vec{p}=m\cdot\vec{v}\).
  • In einem abgeschlossenen System ist der Impuls erhalten (Impulserhaltungssatz).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Impuls ist das Produkt von Masse und Geschwindigkeit eines Körpers: \(\vec{p}=m\cdot\vec{v}\).
  • In einem abgeschlossenen System ist der Impuls erhalten (Impulserhaltungssatz).

Zum Artikel Zu den Aufgaben

Kraftwandler

Grundwissen

  • Kraftwandler ändern den Angriffspunkt, die Richtung, den Betrag oder mehrere dieser Eigenschaften einer Kraft.
  • typische Beispiele für Kraftwandler sind Seil, Hebel, Rolle und Flaschenzug.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Kraftwandler ändern den Angriffspunkt, die Richtung, den Betrag oder mehrere dieser Eigenschaften einer Kraft.
  • typische Beispiele für Kraftwandler sind Seil, Hebel, Rolle und Flaschenzug.

Zum Artikel Zu den Aufgaben

Kräfteaddition

Grundwissen

  • Wirken zwei oder mehr Kräfte auf einen Körper, so kannst du diese durch eine einzige resultierende Kraft \(\vec{F_{\rm{r}}}\) ersetzen.
  • Die Richtung und den Betrag (die Stärke) der resultierenden Kraft kannst du grafisch ermitteln.
  • Zeigen die angreifenden Kräfte in unterschiedliche Richtungen, so addierst du diese mittels Kräfteparallelogramm oder Kräftedreieck.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wirken zwei oder mehr Kräfte auf einen Körper, so kannst du diese durch eine einzige resultierende Kraft \(\vec{F_{\rm{r}}}\) ersetzen.
  • Die Richtung und den Betrag (die Stärke) der resultierenden Kraft kannst du grafisch ermitteln.
  • Zeigen die angreifenden Kräfte in unterschiedliche Richtungen, so addierst du diese mittels Kräfteparallelogramm oder Kräftedreieck.

Zum Artikel Zu den Aufgaben

Schatten

Grundwissen

  • Den lichtfreien Bereich hinter einem Gegenstand nennt man Schatten.
  • Bei zwei oder mehr punktförmigen Lichtquellen unterscheidet man Kernschatten, er wird von keiner Lichtquelle beleuchtet, und Halbschatten, er wird nur von einem Teil der Lichtquellen beleuchtet.
  • Bei ausgedehnten Lichtquellen tritt ein unscharfer Übergangsschatten auf.
 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Den lichtfreien Bereich hinter einem Gegenstand nennt man Schatten.
  • Bei zwei oder mehr punktförmigen Lichtquellen unterscheidet man Kernschatten, er wird von keiner Lichtquelle beleuchtet, und Halbschatten, er wird nur von einem Teil der Lichtquellen beleuchtet.
  • Bei ausgedehnten Lichtquellen tritt ein unscharfer Übergangsschatten auf.
 

Zum Artikel Zu den Aufgaben

Flächen- und Volumenberechnung

Grundwissen

  • Flächeneinheiten besitzen immer die Hochzahl \(2\), z.B. \(\rm{cm^2}\), Volumeneinheiten die Hochzahl \(3\), z.B. \(\rm{cm^3}\).
  • Die Umrechnungszahl von einer Flächeneinheit zur benachbarten ist \(100\).
  • Die Umrechnungszahl von einer Volumeneinheit zur benachbarten ist \(1000\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Flächeneinheiten besitzen immer die Hochzahl \(2\), z.B. \(\rm{cm^2}\), Volumeneinheiten die Hochzahl \(3\), z.B. \(\rm{cm^3}\).
  • Die Umrechnungszahl von einer Flächeneinheit zur benachbarten ist \(100\).
  • Die Umrechnungszahl von einer Volumeneinheit zur benachbarten ist \(1000\).

Zum Artikel Zu den Aufgaben

Durchschnitts- und Momentangeschwindigkeit

Grundwissen

  • Die Durchschnittsgeschwindigkeit ist \(\bar v = \frac{{\Delta x}}{{\Delta t}} = \frac{{{x_{\rm{E}}} - {x_{\rm{A}}}}}{{{t_{\rm{E}}} - {t_{\rm{A}}}}}\), wobei "A" jeweils für Anfang und "E" für Ende steht.
  • Wenn das Zeitintervall \(\Delta t\) möglichst klein, nahezu Null wird, erhält man die Momentangeschwindigkeit \(v = \frac{{\Delta x}}{{\Delta t}}\;\;{\rm{mit}}\;\;\Delta t \to 0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Durchschnittsgeschwindigkeit ist \(\bar v = \frac{{\Delta x}}{{\Delta t}} = \frac{{{x_{\rm{E}}} - {x_{\rm{A}}}}}{{{t_{\rm{E}}} - {t_{\rm{A}}}}}\), wobei "A" jeweils für Anfang und "E" für Ende steht.
  • Wenn das Zeitintervall \(\Delta t\) möglichst klein, nahezu Null wird, erhält man die Momentangeschwindigkeit \(v = \frac{{\Delta x}}{{\Delta t}}\;\;{\rm{mit}}\;\;\Delta t \to 0\).

Zum Artikel Zu den Aufgaben

Mittlere und Momentanbeschleunigung

Grundwissen

  • Die mittlere Beschleunigung ist definiert als Geschwindigkeitsänderung geteilt durch die dafür benötigte Zeit, kurz \(\overline{a} = \frac{v_e - v_a}{t_e - t_a}\)
  • Negative Beschleunigungen entstehen wenn die Änderung der Geschwindigkeit \(\Delta v\) negativ ist.
  • Für die Momentanbeschleunigung \(a\) wählt man ein möglichst kleines Zeitintervall: \(a= \frac{{\Delta v}}{{\Delta t}}{\text{ mit }}\Delta t \to 0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die mittlere Beschleunigung ist definiert als Geschwindigkeitsänderung geteilt durch die dafür benötigte Zeit, kurz \(\overline{a} = \frac{v_e - v_a}{t_e - t_a}\)
  • Negative Beschleunigungen entstehen wenn die Änderung der Geschwindigkeit \(\Delta v\) negativ ist.
  • Für die Momentanbeschleunigung \(a\) wählt man ein möglichst kleines Zeitintervall: \(a= \frac{{\Delta v}}{{\Delta t}}{\text{ mit }}\Delta t \to 0\).

Zum Artikel Zu den Aufgaben

Flaschenzug

Grundwissen

  • Beim Flaschenzug spielt die Anzahl \(n\) der tragenden Seile eine wichtige Rolle.
  • Je größer die Zahl der tragenden Seile ist, desto weniger Zugkraft \(F_Z\) musst du aufbringen, um eine Last \(F_L\) anzuheben. Dafür verlängert sich die notwendige Zugstrecke \(s_Z\), um eine Last die Strecke \(s_L\) anzuheben.
  • Für die Zugkraft gilt \(F_Z=\frac{1}{n}\cdot F_L\), für die Zugstrecke hingegen \(s_Z=n\cdot s_L\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Flaschenzug spielt die Anzahl \(n\) der tragenden Seile eine wichtige Rolle.
  • Je größer die Zahl der tragenden Seile ist, desto weniger Zugkraft \(F_Z\) musst du aufbringen, um eine Last \(F_L\) anzuheben. Dafür verlängert sich die notwendige Zugstrecke \(s_Z\), um eine Last die Strecke \(s_L\) anzuheben.
  • Für die Zugkraft gilt \(F_Z=\frac{1}{n}\cdot F_L\), für die Zugstrecke hingegen \(s_Z=n\cdot s_L\).

Zum Artikel Zu den Aufgaben

Gleitreibung

Grundwissen

  • Gleitreibung tritt auf, wenn ein Körper durch eine Kraft gegen einen anderen Körper gedrückt wird und der eine Körper relativ zu dem anderen Körper gleitet.
  • Die Gleitreibungskraft \(\vec F_{\rm{GR}}\) wirkt immer entgegen der Bewegungsrichtung des Körpers.
  • Für den Betrag der Gleitreibungskraft gilt \(F_{\rm{GR}}=\mu _{\rm{GR}}\cdot F_{\rm{N}}\), wobei \(\mu _{\rm{GR}}\) der Gleitreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Gleitreibung tritt auf, wenn ein Körper durch eine Kraft gegen einen anderen Körper gedrückt wird und der eine Körper relativ zu dem anderen Körper gleitet.
  • Die Gleitreibungskraft \(\vec F_{\rm{GR}}\) wirkt immer entgegen der Bewegungsrichtung des Körpers.
  • Für den Betrag der Gleitreibungskraft gilt \(F_{\rm{GR}}=\mu _{\rm{GR}}\cdot F_{\rm{N}}\), wobei \(\mu _{\rm{GR}}\) der Gleitreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben

Rollreibung

Grundwissen

  • Rollreibung tritt auf, wenn z.B. ein Rad durch eine Kraft gegen eine Unterlage gedrückt wird und das Rad über die Unterlage rollt.
  • Die Rollreibungskraft \(\vec F_{\rm{RR}}\) wirkt immer entgegen der Bewegungsrichtung des Rades.
  • Für den Betrag der Rollreibungskraft gilt \(F_{\rm{RR}}=\mu _{\rm{RR}}\cdot F_{\rm{N}}\), wobei \(\mu _{\rm{RR}}\) der Rollreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Rollreibung tritt auf, wenn z.B. ein Rad durch eine Kraft gegen eine Unterlage gedrückt wird und das Rad über die Unterlage rollt.
  • Die Rollreibungskraft \(\vec F_{\rm{RR}}\) wirkt immer entgegen der Bewegungsrichtung des Rades.
  • Für den Betrag der Rollreibungskraft gilt \(F_{\rm{RR}}=\mu _{\rm{RR}}\cdot F_{\rm{N}}\), wobei \(\mu _{\rm{RR}}\) der Rollreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben

Haftreibung

Grundwissen

  • Haftreibung tritt auf, wenn ein Körper durch eine Kraft gegen einen anderen Körper gedrückt wird, der eine Körper relativ zu dem anderen Körper ruht und auf einen der Körper eine Zugkraft \(\vec F_{\rm{Z}}\) wirkt.
  • Bis zur maximalen Haftreibungskraft \(F_{\rm{HR,max}}\) sind Zugkraft und Haftreibungskraft gleich groß, aber entgegengesetzt gerichtet, sodass der Körper in Ruhe bleibt.
  • Für die maximale Haftreibungskraft gilt \({F_{\rm{HR,max}}} = \mu _{\rm{HR}} \cdot {F_{\rm{N}}}\), wobei \(\mu _{\rm{HR}}\) der Haftreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Haftreibung tritt auf, wenn ein Körper durch eine Kraft gegen einen anderen Körper gedrückt wird, der eine Körper relativ zu dem anderen Körper ruht und auf einen der Körper eine Zugkraft \(\vec F_{\rm{Z}}\) wirkt.
  • Bis zur maximalen Haftreibungskraft \(F_{\rm{HR,max}}\) sind Zugkraft und Haftreibungskraft gleich groß, aber entgegengesetzt gerichtet, sodass der Körper in Ruhe bleibt.
  • Für die maximale Haftreibungskraft gilt \({F_{\rm{HR,max}}} = \mu _{\rm{HR}} \cdot {F_{\rm{N}}}\), wobei \(\mu _{\rm{HR}}\) der Haftreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben

Was ist Bionik?

Grundwissen
Grundwissen

Der Lotuseffekt - selbstreinigende Oberfläche

Grundwissen
Grundwissen

Auftrieb

Grundwissen
Grundwissen

Viskose Reibung

Grundwissen

  • Viskose Reibung beschreibt die Reibung eines Körpers bei der Bewegung in einer Flüssigkeit (oder einem Gas).
  • Mathematisch kann die viskose Reibung gut für Kugeln beschrieben werden.
  • Es gilt \(F_{\rm{VR}}=6\cdot \pi\cdot r\cdot \eta\cdot v\), wobei \(\eta\) die dynamische Viskosität der Flüssigkeit ist \(r\) der Radius der Kugel und \(v\) ihre Geschwindigkeit. 

Zum Artikel
Grundwissen

  • Viskose Reibung beschreibt die Reibung eines Körpers bei der Bewegung in einer Flüssigkeit (oder einem Gas).
  • Mathematisch kann die viskose Reibung gut für Kugeln beschrieben werden.
  • Es gilt \(F_{\rm{VR}}=6\cdot \pi\cdot r\cdot \eta\cdot v\), wobei \(\eta\) die dynamische Viskosität der Flüssigkeit ist \(r\) der Radius der Kugel und \(v\) ihre Geschwindigkeit. 

Zum Artikel Zu den Aufgaben

Flugfrüchte

Grundwissen
Grundwissen

Leichtbauweise

Grundwissen
Grundwissen

Luftreibung

Grundwissen

  • Die Luftreibung nimmt quadratisch mit der Geschwindigkeit zu.
  • Die Querschnittsfläche \(A\) des Körpers und der von der Form abhängige Luftwiderstandsbeiwert \(c_{\rm{w}}\) beeinflussen die Luftreibung.
  • Mathematisch gilt: \(F_{\rm{LR}}=\frac{1}{2}\cdot A\cdot c_{\rm{w}}\cdot \rho_{\rm{Luft}}\cdot v^2\)

Zum Artikel
Grundwissen

  • Die Luftreibung nimmt quadratisch mit der Geschwindigkeit zu.
  • Die Querschnittsfläche \(A\) des Körpers und der von der Form abhängige Luftwiderstandsbeiwert \(c_{\rm{w}}\) beeinflussen die Luftreibung.
  • Mathematisch gilt: \(F_{\rm{LR}}=\frac{1}{2}\cdot A\cdot c_{\rm{w}}\cdot \rho_{\rm{Luft}}\cdot v^2\)

Zum Artikel Zu den Aufgaben

Lichtbündel und Lichtstrahlen

Grundwissen

  • Von Lichtquellen wie der Sonne oder einer Lampe gehen meist divergente (auseinanderlaufende) Lichtbündel aus.
  • Mithilfe von Blenden oder Spalten kannst du daraus (nahezu) parallele Lichtbündel erzeugen, die in unserer Vorstellung aus vielen einzelnen, sehr dünnen Lichtstrahlen bestehen.
  • Lichtstrahlen breiten sich in einem homogenen Medium, wie z.B. Luft, geradlinig aus.
  • Lichtstrahlen stören sich nicht gegenseitig in ihrer geradlinigen Ausbreitung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Von Lichtquellen wie der Sonne oder einer Lampe gehen meist divergente (auseinanderlaufende) Lichtbündel aus.
  • Mithilfe von Blenden oder Spalten kannst du daraus (nahezu) parallele Lichtbündel erzeugen, die in unserer Vorstellung aus vielen einzelnen, sehr dünnen Lichtstrahlen bestehen.
  • Lichtstrahlen breiten sich in einem homogenen Medium, wie z.B. Luft, geradlinig aus.
  • Lichtstrahlen stören sich nicht gegenseitig in ihrer geradlinigen Ausbreitung.

Zum Artikel Zu den Aufgaben

Additive Farbmischung

Grundwissen

  • Bei der additiven Farbmischung entstehen unterschiedliche Farbeindrücke dadurch, dass zu vorhandenem Licht das Licht weiterer Spektralfarben hinzugefügt wird.
  • In der Praxis mischt man nur Licht der drei Spektralfarben "Rot", "Grün" und "Blau". Man spricht dann vom RGB-Farbraum und nennt die Spektralfarben "Rot", "Grün" und "Blau" die Grund- oder Primärfarben der additiven Farbmischung.
  • Mischt man das Licht dieser drei Grundfarben passend zusammen, so erhält man fast alle möglichen Farbeindrücke und auch den Farbeindruck "weiß".

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei der additiven Farbmischung entstehen unterschiedliche Farbeindrücke dadurch, dass zu vorhandenem Licht das Licht weiterer Spektralfarben hinzugefügt wird.
  • In der Praxis mischt man nur Licht der drei Spektralfarben "Rot", "Grün" und "Blau". Man spricht dann vom RGB-Farbraum und nennt die Spektralfarben "Rot", "Grün" und "Blau" die Grund- oder Primärfarben der additiven Farbmischung.
  • Mischt man das Licht dieser drei Grundfarben passend zusammen, so erhält man fast alle möglichen Farbeindrücke und auch den Farbeindruck "weiß".

Zum Artikel Zu den Aufgaben

Subtraktive Farbmischung

Grundwissen

  • Bei der subtraktiven Farbmischung entstehen unterschiedliche Farbeindrücke dadurch, dass aus vorhandenem Licht das Licht einzelner Spektralfarben herausgefiltert wird.
  • In der Praxis filtert man aus Licht, in dem alle Spektralfarben enthalten sind, getrennt voneinander Licht des "roten", des "grünen" und des "blauen" Spektralbereichs heraus. Die entsprechenden Farbfilter erscheinen uns in den Farben "Cyan", "Magenta" und "Gelb" ("Yellow"). Man spricht deshalb vom CMY-Farbraum.
  • Filtert man aus Sonnenlicht das Licht des "roten", des "grünen" und des "blauen" Spektralbereichs in unterschiedlichen Kombinationen und Filterstärken heraus, so erhält man fast alle möglichen Farbeindrücke bis hin zum Farbeindruck "schwarz".

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei der subtraktiven Farbmischung entstehen unterschiedliche Farbeindrücke dadurch, dass aus vorhandenem Licht das Licht einzelner Spektralfarben herausgefiltert wird.
  • In der Praxis filtert man aus Licht, in dem alle Spektralfarben enthalten sind, getrennt voneinander Licht des "roten", des "grünen" und des "blauen" Spektralbereichs heraus. Die entsprechenden Farbfilter erscheinen uns in den Farben "Cyan", "Magenta" und "Gelb" ("Yellow"). Man spricht deshalb vom CMY-Farbraum.
  • Filtert man aus Sonnenlicht das Licht des "roten", des "grünen" und des "blauen" Spektralbereichs in unterschiedlichen Kombinationen und Filterstärken heraus, so erhält man fast alle möglichen Farbeindrücke bis hin zum Farbeindruck "schwarz".

Zum Artikel Zu den Aufgaben

Spektralfarben

Grundwissen

  • Weißes Licht lässt sich mithilfe eines Prismas in seine Spektralfarben zerlegen.
  • Als Spektralfarben werden meist die Regenbogenfarben Rot, Orange, Gelb, Grün, Blau, Indigo und Violett bezeichnet.
  • Spektralfarben lassen sich nicht weiter in andere Farben zerlegen. Es sind reine Farben.
  • Licht enthält oft auch nicht sichtbare Anteile - zum einen infrarotes Licht und zum anderen ultraviolettes Licht.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Weißes Licht lässt sich mithilfe eines Prismas in seine Spektralfarben zerlegen.
  • Als Spektralfarben werden meist die Regenbogenfarben Rot, Orange, Gelb, Grün, Blau, Indigo und Violett bezeichnet.
  • Spektralfarben lassen sich nicht weiter in andere Farben zerlegen. Es sind reine Farben.
  • Licht enthält oft auch nicht sichtbare Anteile - zum einen infrarotes Licht und zum anderen ultraviolettes Licht.

Zum Artikel Zu den Aufgaben

Lochkamera

Grundwissen

  • Das Bild bei einer Lochkamera steht auf dem Kopf und ist seitenverkehrt.
  • Wenn man das Loch vergrößert, wird das Bild zwar heller, dafür aber unschärfer.
  • Bildgröße \(B\) und Gegenstandsgröße \(G\) sowie Bildweite \(b\) und Gegenstandsweite \(g\) sind quotientengleich: \(\frac{B}{G}=\frac{b}{g}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Bild bei einer Lochkamera steht auf dem Kopf und ist seitenverkehrt.
  • Wenn man das Loch vergrößert, wird das Bild zwar heller, dafür aber unschärfer.
  • Bildgröße \(B\) und Gegenstandsgröße \(G\) sowie Bildweite \(b\) und Gegenstandsweite \(g\) sind quotientengleich: \(\frac{B}{G}=\frac{b}{g}\).

Zum Artikel Zu den Aufgaben

Lichtgeschwindigkeit

Grundwissen

  • Die Ausbreitungsgeschwindigkeit von Licht nennt man Lichtgeschwindigkeit.
  • Die Lichtgeschwindigkeit im luftleeren Raum (Vakuum) beträgt \(299.792.458\,\rm{\frac{m}{s}}\). Das sind etwa \(300.000\,\rm{\frac{km}{s}}\)
  • In Formeln wird diese Lichtgeschwindigkeit häufig mit \(c\) bezeichnet.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Ausbreitungsgeschwindigkeit von Licht nennt man Lichtgeschwindigkeit.
  • Die Lichtgeschwindigkeit im luftleeren Raum (Vakuum) beträgt \(299.792.458\,\rm{\frac{m}{s}}\). Das sind etwa \(300.000\,\rm{\frac{km}{s}}\)
  • In Formeln wird diese Lichtgeschwindigkeit häufig mit \(c\) bezeichnet.

Zum Artikel Zu den Aufgaben

Bildentstehung bei Linsenabbildungen

Grundwissen

  • Von Konvexlinsen erzeugte reelle Bilder (Voraussetzung \(g>f\)) sind höhen- und seitenverkehrt.
  • Bilder entstehen dabei punktweise! Bilder wandern niemals als Ganzes.

Zum Artikel
Grundwissen

  • Von Konvexlinsen erzeugte reelle Bilder (Voraussetzung \(g>f\)) sind höhen- und seitenverkehrt.
  • Bilder entstehen dabei punktweise! Bilder wandern niemals als Ganzes.

Zum Artikel Zu den Aufgaben

Bildeigenschaften bei Abbildungen

Grundwissen

  • Wenn \(g>f\) ist, entstehen bei Abbildung an Sammellinsen reelle, höhen- und seitenverkehrte Bilder.
  • Ist \(g>2\cdot f\), so sind Bilder an Sammellinsen kleiner als der Gegenstand. Gilt \(2\cdot f>g>f\), so sind die Bilder größer als der Gegenstand.
  • Wenn \(g<f\) ist, entstehen bei Abbildung an Sammellinsen virtuelle Bilder, die nicht auf dem Kopf stehen und größer als der Gegenstand sind.
  • Bei Abbildung an Zerstreuungslinsen entstehen immer virtuelle Bilder, die kleiner als der Gegenstand sind und nicht auf dem Kopf stehen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn \(g>f\) ist, entstehen bei Abbildung an Sammellinsen reelle, höhen- und seitenverkehrte Bilder.
  • Ist \(g>2\cdot f\), so sind Bilder an Sammellinsen kleiner als der Gegenstand. Gilt \(2\cdot f>g>f\), so sind die Bilder größer als der Gegenstand.
  • Wenn \(g<f\) ist, entstehen bei Abbildung an Sammellinsen virtuelle Bilder, die nicht auf dem Kopf stehen und größer als der Gegenstand sind.
  • Bei Abbildung an Zerstreuungslinsen entstehen immer virtuelle Bilder, die kleiner als der Gegenstand sind und nicht auf dem Kopf stehen.

Zum Artikel Zu den Aufgaben