Direkt zum Inhalt
Suchergebnisse 61 - 90 von 158

Möglichkeiten der Kernfusion

Grundwissen

  • Verschiedene Atomkern können unter geeigneten Bedingungen miteinander fusionieren.
  • Die fusionierenden Atomkerne bestimmen, wie groß die frei werdende Energie ist.
  • Damit es zur Fusion kommen kann, müssen die elektrostatischen Abstoßungskräfte der Kerne überwunden werden.

Zum Artikel
Grundwissen

  • Verschiedene Atomkern können unter geeigneten Bedingungen miteinander fusionieren.
  • Die fusionierenden Atomkerne bestimmen, wie groß die frei werdende Energie ist.
  • Damit es zur Fusion kommen kann, müssen die elektrostatischen Abstoßungskräfte der Kerne überwunden werden.

Zum Artikel Zu den Aufgaben

Teilchen und Anti-Teilchen

Grundwissen

  • Zu jedem Materieteilchen gibt es ein Anti-Teilchen mit exakt der entgegengesetzten elektrischen, starken und schwachen Ladung.
  • Anti-Teilchen werden meist mit einem Querstrich über dem Teilchensymbol gekennzeichnet.
  • Trifft ein Materieteilchen auf sein Anti-Teilchen annihilieren sich beide (Paarvernichtung) - die vorhandene Energie wandelt sich in Botenteilchen um. 
  • Die Paarerzeugung kann nur unter bestimmten Rahmenbedingungen stattfinden, z.B. im Coulomb-Feld eines Atomkerns.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zu jedem Materieteilchen gibt es ein Anti-Teilchen mit exakt der entgegengesetzten elektrischen, starken und schwachen Ladung.
  • Anti-Teilchen werden meist mit einem Querstrich über dem Teilchensymbol gekennzeichnet.
  • Trifft ein Materieteilchen auf sein Anti-Teilchen annihilieren sich beide (Paarvernichtung) - die vorhandene Energie wandelt sich in Botenteilchen um. 
  • Die Paarerzeugung kann nur unter bestimmten Rahmenbedingungen stattfinden, z.B. im Coulomb-Feld eines Atomkerns.

Zum Artikel Zu den Aufgaben

Periodentafel der Elemente

Grundwissen

  • Die Struktur im Periodensystem der Elemente legen Beobachtungen hinsichtlich der Ionisierungsenergie und des Molvolumens nahe.
  • Die Anordnung der Elemente im Periodensystem erfolgt nach ihrer Ordnungszahl (Kernladungszahl) \(Z\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Struktur im Periodensystem der Elemente legen Beobachtungen hinsichtlich der Ionisierungsenergie und des Molvolumens nahe.
  • Die Anordnung der Elemente im Periodensystem erfolgt nach ihrer Ordnungszahl (Kernladungszahl) \(Z\).

Zum Artikel Zu den Aufgaben

Scheinbare Sternhelligkeit

Grundwissen

  • Die scheinbare Helligkeit eines Sternes gibt an, wie hell ein Beobachter auf der Erde den Stern wahrnimmt.
  • Die scheinbare Helligkeit wird in \(\rm{mag}\) (für Magnituden) angegeben. Sterne mit kleineren \(\rm{mag}\)-Werten werden dabei als heller wahrgenommen als Sterne mit größeren \(\rm{mag}\)-Werten.
  • Die Skala der scheinbaren Helligkeiten basiert auf einem logarithmischen Zusammenhang. Als Nullpunkt dient die scheinbare Helligkeit des Sterns Wega.

Zum Artikel
Grundwissen

  • Die scheinbare Helligkeit eines Sternes gibt an, wie hell ein Beobachter auf der Erde den Stern wahrnimmt.
  • Die scheinbare Helligkeit wird in \(\rm{mag}\) (für Magnituden) angegeben. Sterne mit kleineren \(\rm{mag}\)-Werten werden dabei als heller wahrgenommen als Sterne mit größeren \(\rm{mag}\)-Werten.
  • Die Skala der scheinbaren Helligkeiten basiert auf einem logarithmischen Zusammenhang. Als Nullpunkt dient die scheinbare Helligkeit des Sterns Wega.

Zum Artikel Zu den Aufgaben

Masse-Leuchtkraft-Beziehung

Grundwissen

  • Für Hauptreihensterne beobachtet man eine direkte Beziehung zwischen Sternmasse \(M\) und Leuchtkraft \(L\).
  • In erster Näherung gilt: \(L\sim M^3\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für Hauptreihensterne beobachtet man eine direkte Beziehung zwischen Sternmasse \(M\) und Leuchtkraft \(L\).
  • In erster Näherung gilt: \(L\sim M^3\)

Zum Artikel Zu den Aufgaben

Hauptreihenstadium

Grundwissen

  • Im Hauptreihenstadium befinden sich Sterne während des stabilen Wasserstoffbrennens, das etwa \(90\,\%\) der Lebenszeit ausmacht.
  • Mit Wissen über die Masse sowie der Leuchtkraft eines Sterns und der empirischen Masse-Leuchtkraftbeziehung gilt für die Hauptreihenzeit eines Sterns \(t_{\rm{h}}\sim\frac{1}{m^2}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Hauptreihenstadium befinden sich Sterne während des stabilen Wasserstoffbrennens, das etwa \(90\,\%\) der Lebenszeit ausmacht.
  • Mit Wissen über die Masse sowie der Leuchtkraft eines Sterns und der empirischen Masse-Leuchtkraftbeziehung gilt für die Hauptreihenzeit eines Sterns \(t_{\rm{h}}\sim\frac{1}{m^2}\).

Zum Artikel Zu den Aufgaben

Sterngeburt

Grundwissen

  • Gas-, Staub- und Molekülwolken an den Rändern der Spiralarme der Galaxis sind Gebiete der Sternentstehung, da hier interstellare Masse konzentriert ist.
  • Das JEANS-Kriterium besagt, dass eine Gaswolke kollabiert und ein Stern entstehen kann, wenn ihre Masse größer als die JEANS-Masse ist.

Zum Artikel
Grundwissen

  • Gas-, Staub- und Molekülwolken an den Rändern der Spiralarme der Galaxis sind Gebiete der Sternentstehung, da hier interstellare Masse konzentriert ist.
  • Das JEANS-Kriterium besagt, dass eine Gaswolke kollabiert und ein Stern entstehen kann, wenn ihre Masse größer als die JEANS-Masse ist.

Zum Artikel Zu den Aufgaben

Zusammenhang von Atom- und Kernmassen

Grundwissen

  • Die Atommasse \(m_{\rm{A}}\) unterscheidet sich von der Kernmasse \(m_{\rm{K}}\) um die Summe der Ruhemassen der im Atom gebundenen Elektronen und um die Bindungsenergie der Elektronen in der Atomhülle.
  • Die gesamte Elektronenbindungsenergie wird abgeschätzt mit \(B_{\rm{e}} = 15{,}73\,\rm{eV} \cdot Z^{\textstyle{7 \over 3}}\)
  • Oft reicht die näherungsweise Berechnung der Kernmasse mittels \(m_{\rm{K}}\left( \rm{X} \right) \approx m_{\rm{A}}\left( \rm{X} \right) - Z \cdot m_{\rm{e}}\)

Zum Artikel
Grundwissen

  • Die Atommasse \(m_{\rm{A}}\) unterscheidet sich von der Kernmasse \(m_{\rm{K}}\) um die Summe der Ruhemassen der im Atom gebundenen Elektronen und um die Bindungsenergie der Elektronen in der Atomhülle.
  • Die gesamte Elektronenbindungsenergie wird abgeschätzt mit \(B_{\rm{e}} = 15{,}73\,\rm{eV} \cdot Z^{\textstyle{7 \over 3}}\)
  • Oft reicht die näherungsweise Berechnung der Kernmasse mittels \(m_{\rm{K}}\left( \rm{X} \right) \approx m_{\rm{A}}\left( \rm{X} \right) - Z \cdot m_{\rm{e}}\)

Zum Artikel Zu den Aufgaben

Atomaufbau

Grundwissen

  • Modelle über den Atomaufbau haben sich ständig weiterentwickelt.
  • Ein Atom besteht aus einem sehr kleinen Atomkern und einer Hülle.
  • Der Atomkern besteht aus Protonen und Neutronen. In der Atomhülle halten sich die Elektronen auf.
  • Protonen und Neutronen bestehen wiederum jeweils aus drei Quarks.

Zum Artikel
Grundwissen

  • Modelle über den Atomaufbau haben sich ständig weiterentwickelt.
  • Ein Atom besteht aus einem sehr kleinen Atomkern und einer Hülle.
  • Der Atomkern besteht aus Protonen und Neutronen. In der Atomhülle halten sich die Elektronen auf.
  • Protonen und Neutronen bestehen wiederum jeweils aus drei Quarks.

Zum Artikel Zu den Aufgaben

Altersbestimmung mit der Radiocarbonmethode

Grundwissen

  • C‑14 ist ein natürliches radioaktives Kohlenstoffisotop, dass in jedem lebenden Organismus einen festen Anteil an allen Kohlenstoffisotopen hat.
  • Stirbt ein Organismus ab, so nimmt ab diesem Zeitpunkt der C‑14-Anteil entsprechend des Zerfallsgesetzes ab \(T_{1/2}\left(\text{C-14}\right)=5730\,\rm{a}\).
  • Aus dem verbleibenden C‑14-Anteil bzw. der entsprechenden Aktivität kann mit \(t = \frac{{\ln \left( {\frac{{N(t)}}{{N\left( 0 \right)}}} \right) \cdot {T_{1/2}}}}{{ - \ln (2)}}\)  das Alter der Probe berechnet werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • C‑14 ist ein natürliches radioaktives Kohlenstoffisotop, dass in jedem lebenden Organismus einen festen Anteil an allen Kohlenstoffisotopen hat.
  • Stirbt ein Organismus ab, so nimmt ab diesem Zeitpunkt der C‑14-Anteil entsprechend des Zerfallsgesetzes ab \(T_{1/2}\left(\text{C-14}\right)=5730\,\rm{a}\).
  • Aus dem verbleibenden C‑14-Anteil bzw. der entsprechenden Aktivität kann mit \(t = \frac{{\ln \left( {\frac{{N(t)}}{{N\left( 0 \right)}}} \right) \cdot {T_{1/2}}}}{{ - \ln (2)}}\)  das Alter der Probe berechnet werden.

Zum Artikel Zu den Aufgaben

Linearer Potentialtopf

Grundwissen

  • Im Modell des eindimensionalen linearen unendlichen Potentialtopfs ist die potentielle Energie eines Teilchens im Topf Null, an den Rändern unendlich groß.
  • Die Aufenthaltswahrscheinlichkeit des Teilchens am Topfrand ist Null. Die Eigenschwingungen des Teilchens im Potentialtopf sind daher analog zu stehenden Seilwellen an festen Enden.
  • Mit der Beziehung \(\lambda=\frac{h}{p}\) ergibt sich die Gesamtenergie des Teilchens im Potentialtopf zu \({E_{\rm{ges}}} = \frac{{{h^2}}}{{8 \cdot m \cdot {a^2}}} \cdot {n^2}\)
  • Mit \(n\in \left\{ {1\;;\;2\;;\;3\;;\;...} \right\}\) erhält man die verschiedenen Energieniveaus des Elektrons im Potentialtopf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Modell des eindimensionalen linearen unendlichen Potentialtopfs ist die potentielle Energie eines Teilchens im Topf Null, an den Rändern unendlich groß.
  • Die Aufenthaltswahrscheinlichkeit des Teilchens am Topfrand ist Null. Die Eigenschwingungen des Teilchens im Potentialtopf sind daher analog zu stehenden Seilwellen an festen Enden.
  • Mit der Beziehung \(\lambda=\frac{h}{p}\) ergibt sich die Gesamtenergie des Teilchens im Potentialtopf zu \({E_{\rm{ges}}} = \frac{{{h^2}}}{{8 \cdot m \cdot {a^2}}} \cdot {n^2}\)
  • Mit \(n\in \left\{ {1\;;\;2\;;\;3\;;\;...} \right\}\) erhält man die verschiedenen Energieniveaus des Elektrons im Potentialtopf.

Zum Artikel Zu den Aufgaben

Entfernungsbestimmung mit Cepheiden

Grundwissen

  • Cepheiden sind Pulsationsveränderliche - ihre Leuchtkraft bzw. Helligkeit verändert sich streng periodisch.
  • Die Helligkeit hängt bei Cephiden mit der Länge ihrer Periode zusammen (Perioden-Leuchtkraft-Beziehung)
  • Cepheiden dienen zur Entfernungsmessung im Kosmos: aus der Beobachtung der Periodendauer kann man direkt auf die absolute Helligkeit schließen. Durch die Messung der relativen Helligkeit dann mit dem Entfernungsmodul die Entfernung berechnen werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Cepheiden sind Pulsationsveränderliche - ihre Leuchtkraft bzw. Helligkeit verändert sich streng periodisch.
  • Die Helligkeit hängt bei Cephiden mit der Länge ihrer Periode zusammen (Perioden-Leuchtkraft-Beziehung)
  • Cepheiden dienen zur Entfernungsmessung im Kosmos: aus der Beobachtung der Periodendauer kann man direkt auf die absolute Helligkeit schließen. Durch die Messung der relativen Helligkeit dann mit dem Entfernungsmodul die Entfernung berechnen werden.

Zum Artikel Zu den Aufgaben

HUBBLE-Gesetz

Grundwissen

  • Galaxien entfernen sich um so schneller von uns, je weiter die Galaxien von uns weg sind.
  • Der HUBBLE-Parameter gibt die aktuelle Expansionsrate des Universums an und beträgt aktuell etwa \(H_0=70\,\rm{\frac{km}{s\cdot Mpc}}\).
  • Die Expansionsrate des Universums hat aber im Laufe der Zeit zugenommen, sodass die lineare Beziehung  \(z\cdot c=H_0\cdot D\) zwischen Rotverschiebung und Entfernung nur für Rotverschiebungen bis \(z\approx 0{,}1\) gilt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Galaxien entfernen sich um so schneller von uns, je weiter die Galaxien von uns weg sind.
  • Der HUBBLE-Parameter gibt die aktuelle Expansionsrate des Universums an und beträgt aktuell etwa \(H_0=70\,\rm{\frac{km}{s\cdot Mpc}}\).
  • Die Expansionsrate des Universums hat aber im Laufe der Zeit zugenommen, sodass die lineare Beziehung  \(z\cdot c=H_0\cdot D\) zwischen Rotverschiebung und Entfernung nur für Rotverschiebungen bis \(z\approx 0{,}1\) gilt.

Zum Artikel Zu den Aufgaben

GEIGER-MÜLLER-Zählrohr

Grundwissen

  • Ein Geiger-Müller-Zählrohr (umgangssprachlich häufig Geigerzähler genannt) ist ein robustes Nachweisgerät für ionisierende Strahlung.
  • Mit Geiger-Müller-Zählrohren können \(\alpha\)- und \(\beta\)-Strahlung besonders gut nachgewiesen werden, \(\gamma\)-Strahlung wird jedoch nur zu einem kleinen Teil registriert.
  • Ein Geiger-Müller-Zählrohr wird meist an einen Digitalzähler oder einen Lautsprecher angeschlossen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Geiger-Müller-Zählrohr (umgangssprachlich häufig Geigerzähler genannt) ist ein robustes Nachweisgerät für ionisierende Strahlung.
  • Mit Geiger-Müller-Zählrohren können \(\alpha\)- und \(\beta\)-Strahlung besonders gut nachgewiesen werden, \(\gamma\)-Strahlung wird jedoch nur zu einem kleinen Teil registriert.
  • Ein Geiger-Müller-Zählrohr wird meist an einen Digitalzähler oder einen Lautsprecher angeschlossen.

Zum Artikel Zu den Aufgaben

Tröpfchenmodell des Atomkerns

Grundwissen

  • Das Tröpfchenmodell geht von einer konstanten Materiedichte im Kern ähnlich wie bei einen Flüssigkeitstropfen aus.
  • Die Ruhemasse eines Kerns kann mit \({m_{{\rm{K}}{\rm{,0}}}} = Z \cdot {m_{p,0}} + N \cdot {m_{n,0}} - \frac{B}{{{c^2}}}\) berechnet werden, wobei \(B\) die Bindungsenergie ist.
  • Die Bindungsenergie setzt sich unter anderem aus der Volumenenergie, der Oberflächenenergie und der Coulomb-Energie zusammen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Tröpfchenmodell geht von einer konstanten Materiedichte im Kern ähnlich wie bei einen Flüssigkeitstropfen aus.
  • Die Ruhemasse eines Kerns kann mit \({m_{{\rm{K}}{\rm{,0}}}} = Z \cdot {m_{p,0}} + N \cdot {m_{n,0}} - \frac{B}{{{c^2}}}\) berechnet werden, wobei \(B\) die Bindungsenergie ist.
  • Die Bindungsenergie setzt sich unter anderem aus der Volumenenergie, der Oberflächenenergie und der Coulomb-Energie zusammen.

Zum Artikel Zu den Aufgaben

Massendefekt und Bindungsenergie

Grundwissen

  • Die Masse eines Atomkerns ist immer kleiner als die Summe der Masse der Nukleonen, aus denen er besteht. Die Differenz dieser Massen bezeichnet man als Massendefekt oder Massenverlust \(\Delta m\).
  • Beim "Zusammenbau" eines Atomkerns aus einzelnen Nukleonen wird immer Energie frei. Diese freiwerdende Energie bezeichnet man als Bindungsenergie \(B\).
  • Massendefekt und Bindungsenergie hängen nach EINSTEINs Masse-Energie-Beziehung durch \(B=\Delta m \cdot c^2\) zusammen.
  • Als Bindungsenergie pro Nukleon bezeichnet man den Wert \(\frac{B}{A}\).
  • Das Nickel-Isotop \(\rm{Ni}-62\) besitzt die größte Bindungsenergie pro Nukleon.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Masse eines Atomkerns ist immer kleiner als die Summe der Masse der Nukleonen, aus denen er besteht. Die Differenz dieser Massen bezeichnet man als Massendefekt oder Massenverlust \(\Delta m\).
  • Beim "Zusammenbau" eines Atomkerns aus einzelnen Nukleonen wird immer Energie frei. Diese freiwerdende Energie bezeichnet man als Bindungsenergie \(B\).
  • Massendefekt und Bindungsenergie hängen nach EINSTEINs Masse-Energie-Beziehung durch \(B=\Delta m \cdot c^2\) zusammen.
  • Als Bindungsenergie pro Nukleon bezeichnet man den Wert \(\frac{B}{A}\).
  • Das Nickel-Isotop \(\rm{Ni}-62\) besitzt die größte Bindungsenergie pro Nukleon.

Zum Artikel Zu den Aufgaben

Kraftwärmekopplung

Grundwissen
Grundwissen

Gigantische RYDBERG-Moleküle - Von der Theorie zum Experiment

Grundwissen
Grundwissen

Moleküle in Action - Drehbuch für einen Film der Extreme

Grundwissen
Grundwissen

Das Zusammenspiel von Kosmischer Inflation und String-Theorie

Grundwissen
Grundwissen

Ein Gespräch über Quantenphysik

Grundwissen
Grundwissen

Absolute Sternhelligkeit

Grundwissen

  • Der Abstand eines Sternes von der Erde hat Einfluss auf seine beobachtete Helligkeit.
  • Die absolute Helligkeit \(M\) gibt an, wie hell ein Stern im Normabstand von \(10\,\rm{pc}\) erscheinen würde.
  • Der Entfernungsmodul gibt die Differenz von relativer und absoluter Helligkeit an: \(m - M = 5 \cdot \lg \left( {\frac{r}{{10\,\rm{pc}}}} \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Abstand eines Sternes von der Erde hat Einfluss auf seine beobachtete Helligkeit.
  • Die absolute Helligkeit \(M\) gibt an, wie hell ein Stern im Normabstand von \(10\,\rm{pc}\) erscheinen würde.
  • Der Entfernungsmodul gibt die Differenz von relativer und absoluter Helligkeit an: \(m - M = 5 \cdot \lg \left( {\frac{r}{{10\,\rm{pc}}}} \right)\)

Zum Artikel Zu den Aufgaben

Solarkonstante und Strahlungsleistung

Grundwissen

  • Der Mittelwert für die Solarkonstante \({S_0}\) bzw. \({E_0}\)  ist \({S_0} =E_0=1361\,\frac{{\rm{W}}}{{{{\rm{m}}^2}}}\).
  • Die Strahlungsleistung der Sonne beträgt etwa \(L=3{,}84\cdot 10^{26}\,\rm{W}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Mittelwert für die Solarkonstante \({S_0}\) bzw. \({E_0}\)  ist \({S_0} =E_0=1361\,\frac{{\rm{W}}}{{{{\rm{m}}^2}}}\).
  • Die Strahlungsleistung der Sonne beträgt etwa \(L=3{,}84\cdot 10^{26}\,\rm{W}\).

Zum Artikel Zu den Aufgaben

Charakteristische Strahlung

Grundwissen

  • Im kontinuierlichen RÖNTGEN-Spektrum können charakteristische Linien identifiziert werden, die sog. charakteristische Strahlung.
  • Ursache sind Übergänge von Elektronen zwischen spezifischen energetischen Elektronenschalen (K-Schale, L-Schale, M-Schale,...).
  • Die Kα-Linie ist in charakteristischen Spektren besonders stark ausgeprägt und die Lage der Linie im kontinuierlichen Spektrum stoffspezifisch.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im kontinuierlichen RÖNTGEN-Spektrum können charakteristische Linien identifiziert werden, die sog. charakteristische Strahlung.
  • Ursache sind Übergänge von Elektronen zwischen spezifischen energetischen Elektronenschalen (K-Schale, L-Schale, M-Schale,...).
  • Die Kα-Linie ist in charakteristischen Spektren besonders stark ausgeprägt und die Lage der Linie im kontinuierlichen Spektrum stoffspezifisch.

Zum Artikel Zu den Aufgaben

Energiezustände von Atomen

Grundwissen

  • Atome können nur Zustände mit ganz bestimmten, diskreten Energiezuständen annehmen.
  • Entsprechend haben die von einem Atom ausgesendeten Photonen jeweils genau die Energie, die zwischen zwei solchen diskreten Energieniveaus des Atoms liegt.
  • Um ein Atom anzuregen, benötigt es ebenfalls exakt einen solchen "passenden" Energiebetrag.
  • Das Auftreten von Linienspektren kann durch diskrete Energieniveaus erklärt werden.

Zum Artikel
Grundwissen

  • Atome können nur Zustände mit ganz bestimmten, diskreten Energiezuständen annehmen.
  • Entsprechend haben die von einem Atom ausgesendeten Photonen jeweils genau die Energie, die zwischen zwei solchen diskreten Energieniveaus des Atoms liegt.
  • Um ein Atom anzuregen, benötigt es ebenfalls exakt einen solchen "passenden" Energiebetrag.
  • Das Auftreten von Linienspektren kann durch diskrete Energieniveaus erklärt werden.

Zum Artikel Zu den Aufgaben

Spektralklassen

Grundwissen

  • Mittels Spektralanalyse erhält man das charakteristische Spektrum eines Sterns.
  • Aus Eigenschaften des Spektrums (Strahlungsmaximum, Absorptionslinien) kann man Rückschlüsse auf Eigenschaften des Sterns (z.B. die Oberflächentemperatur) ziehen.
  • Zur Klassifizierung werden sog. Spektralklassen genutzt. Die sieben Grundtypen werden mit O, B, A, F, G, K und M bezeichnet.

Zum Artikel
Grundwissen

  • Mittels Spektralanalyse erhält man das charakteristische Spektrum eines Sterns.
  • Aus Eigenschaften des Spektrums (Strahlungsmaximum, Absorptionslinien) kann man Rückschlüsse auf Eigenschaften des Sterns (z.B. die Oberflächentemperatur) ziehen.
  • Zur Klassifizierung werden sog. Spektralklassen genutzt. Die sieben Grundtypen werden mit O, B, A, F, G, K und M bezeichnet.

Zum Artikel Zu den Aufgaben

Jahreszeiten

Grundwissen

  • Die Neigung der Erdachse sorgt für die Jahreszeiten
  • Im Sommer fällt das Sonnenlicht mittags steiler auf die Erdoberfläche, im Winter flacher
  • Einstrahlwinkel und Tageslängen beeinflussen die Erwärmung

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Neigung der Erdachse sorgt für die Jahreszeiten
  • Im Sommer fällt das Sonnenlicht mittags steiler auf die Erdoberfläche, im Winter flacher
  • Einstrahlwinkel und Tageslängen beeinflussen die Erwärmung

Zum Artikel Zu den Aufgaben

Erstes KEPLERsches Gesetz

Grundwissen

  • Die Planeten bewegen sich auf elliptischen Bahnen, in deren einem Brennpunkt die Sonne steht.
  • Den Bahnpunkt mit dem geringsten Abstand zur Sonne bezeichnet man als Perihel, den Bahnpunkt mit dem größten Abstand zur Sonne als Aphel.
  • Die Erdbahn hat nur eine sehr geringe Exzentrizität.

Zum Artikel
Grundwissen

  • Die Planeten bewegen sich auf elliptischen Bahnen, in deren einem Brennpunkt die Sonne steht.
  • Den Bahnpunkt mit dem geringsten Abstand zur Sonne bezeichnet man als Perihel, den Bahnpunkt mit dem größten Abstand zur Sonne als Aphel.
  • Die Erdbahn hat nur eine sehr geringe Exzentrizität.

Zum Artikel Zu den Aufgaben