Suchergebnis für:
Orientierung mit Hilfe des Polarsterns (Nordstern)
- Der Polarstern steht nahe des Himmelsnordpols und lässt sich daher zur Bestimmung der geographischen Nordrichtung nutzen
- Die Höhe \(h\) des Polarsterns über dem Horizont ist gleich der geographischen Breite \(\varphi\) des Beobachters.
- Der Polarstern steht nahe des Himmelsnordpols und lässt sich daher zur Bestimmung der geographischen Nordrichtung nutzen
- Die Höhe \(h\) des Polarsterns über dem Horizont ist gleich der geographischen Breite \(\varphi\) des Beobachters.
Optische Geräte
- Wichtige optische Geräte sind Lupe, Fernrohr, Mikroskop und Fotoapparat.
- Beim Fernrohr wird zwischen Kepler- und Galilei-Fernrohr unterschieden.
- Häufig ist die Vergrößerung \(V\) eines optischen Gerätes von besonderem Interesse.
- Wichtige optische Geräte sind Lupe, Fernrohr, Mikroskop und Fotoapparat.
- Beim Fernrohr wird zwischen Kepler- und Galilei-Fernrohr unterschieden.
- Häufig ist die Vergrößerung \(V\) eines optischen Gerätes von besonderem Interesse.
Ultraviolett
- Größenordnung der Wellenlänge: zwischen \(380\,{\rm nm}\) und \(1\,{\rm nm}\)
- Größenordnung der Frequenz: von \(789\,{\rm THz}\) bis \(300\,{\rm PHz}\)
- Anwendungen: Schwarzlichtlampen, Geldscheinprüfung, Härtung von Klebstoffen
- Größenordnung der Wellenlänge: zwischen \(380\,{\rm nm}\) und \(1\,{\rm nm}\)
- Größenordnung der Frequenz: von \(789\,{\rm THz}\) bis \(300\,{\rm PHz}\)
- Anwendungen: Schwarzlichtlampen, Geldscheinprüfung, Härtung von Klebstoffen
Röntgenstrahlung
- Größenordnung der Wellenlänge: zwischen \(1\,{\rm nm}\) und \(10\,{\rm pm}\)
- Größenordnung der Frequenz: von \(3\cdot 10^{17}\,{\rm Hz}\) bis \(3\cdot 10^{19}\,{\rm Hz}\)
- Anwendungen: Röntgengeräte, Computertomographen
- Größenordnung der Wellenlänge: zwischen \(1\,{\rm nm}\) und \(10\,{\rm pm}\)
- Größenordnung der Frequenz: von \(3\cdot 10^{17}\,{\rm Hz}\) bis \(3\cdot 10^{19}\,{\rm Hz}\)
- Anwendungen: Röntgengeräte, Computertomographen
Gammastrahlung
- Größenordnung der Wellenlänge: kleiner als \(10\,{\rm pm}\)
- Größenordnung der Frequenz: größer als \(3\cdot 10^{19}\,{\rm Hz}\)
- Auftreten: radioaktiver Zerfall, Umwandlungsreaktionen von Elementarteilchen
- Größenordnung der Wellenlänge: kleiner als \(10\,{\rm pm}\)
- Größenordnung der Frequenz: größer als \(3\cdot 10^{19}\,{\rm Hz}\)
- Auftreten: radioaktiver Zerfall, Umwandlungsreaktionen von Elementarteilchen
Entwicklung schwerer Sterne
- Massereiche Sterne der Hauptreihe kollabieren unter ihrer eigenen Gravitation, wenn im Kern kein Energiegewinn mittels Fusion mehr möglich ist.
- Neutronensterne besitzen kleine Radien von etwas \(10\) bis \(13\,\rm{km}\) und eine extrem hohe Dichte.
- Schnell rotierende Neutronensterne können gerichtete Radiostrahlung aussenden, die bei günstiger geometrischer Lage auf der Erde detektiert werden können. Solche Sterne nennt man Pulsare.
- Massereiche Sterne der Hauptreihe kollabieren unter ihrer eigenen Gravitation, wenn im Kern kein Energiegewinn mittels Fusion mehr möglich ist.
- Neutronensterne besitzen kleine Radien von etwas \(10\) bis \(13\,\rm{km}\) und eine extrem hohe Dichte.
- Schnell rotierende Neutronensterne können gerichtete Radiostrahlung aussenden, die bei günstiger geometrischer Lage auf der Erde detektiert werden können. Solche Sterne nennt man Pulsare.
Dunkle Materie und Dunkle Energie
- Nur etwa 4,9% der im Universum enthaltenen Masse besteht aus den Standardteilchen der Elementarteilchenphysik
- 26,8% bestehen aus Dunkler Materie, die zur Masse von Galaxien beiträgt und rein gravitativ wechselwirkt.
- 68,3% bestehen aus sog. Dunkler Energie die mit negativem Druck einhergeht und bestrebt ist, den Raum auszudehnen.
- Nur etwa 4,9% der im Universum enthaltenen Masse besteht aus den Standardteilchen der Elementarteilchenphysik
- 26,8% bestehen aus Dunkler Materie, die zur Masse von Galaxien beiträgt und rein gravitativ wechselwirkt.
- 68,3% bestehen aus sog. Dunkler Energie die mit negativem Druck einhergeht und bestrebt ist, den Raum auszudehnen.
Kosmologie und Standardmodell
- Die Kosmologie beschäftigt sich mit dem derzeitigen Aufbau und der zeitlichen Entwicklung, also der Geschichte des Universums
- Das sog. Standardmodell der Kosmologie ist die anerkannteste Theorie über die Entwicklung des Universums und geht von einem Urknall vor 13,8 Milliarden Jahren aus.
- Die Kosmologie beschäftigt sich mit dem derzeitigen Aufbau und der zeitlichen Entwicklung, also der Geschichte des Universums
- Das sog. Standardmodell der Kosmologie ist die anerkannteste Theorie über die Entwicklung des Universums und geht von einem Urknall vor 13,8 Milliarden Jahren aus.
Elektromagnetisches Spektrum
- Das elektromagnetische Spektrum erstreckt sich über viele Größenordnungen hinweg.
- Das sichtbare Licht ist nur ein kleiner Teil des elektromagnetischen Spektrums.
- Das elektromagnetische Spektrum erstreckt sich über viele Größenordnungen hinweg.
- Das sichtbare Licht ist nur ein kleiner Teil des elektromagnetischen Spektrums.
Sichtbares Licht
- Größenordnung der Wellenlänge: zwischen \(780\,{\rm nm}\) und \(380\,{\rm nm}\)
- Größenordnung der Frequenz: von \(384\,{\rm THz}\) bis \(789\,{\rm THz}\)
- Größenordnung der Wellenlänge: zwischen \(780\,{\rm nm}\) und \(380\,{\rm nm}\)
- Größenordnung der Frequenz: von \(384\,{\rm THz}\) bis \(789\,{\rm THz}\)
Infrarot
- Größenordnung der Wellenlänge: zwischen \(1\,{\rm mm}\) und \(780\,{\rm nm}\)
- Größenordnung der Frequenz: von \(300\,{\rm GHz}\) bis \(385\,{\rm THz}\)
- Anwendungen: Fernbedienungen, Temperaturmessung, Vegetationsbestimmung
- Größenordnung der Wellenlänge: zwischen \(1\,{\rm mm}\) und \(780\,{\rm nm}\)
- Größenordnung der Frequenz: von \(300\,{\rm GHz}\) bis \(385\,{\rm THz}\)
- Anwendungen: Fernbedienungen, Temperaturmessung, Vegetationsbestimmung
Mikrowellen
- Größenordnung der Wellenlänge: zwischen \(1\,{\rm m}\) und \(1\,{\rm mm}\)
- Größenordnung der Frequenz: von \(300\,{\rm MHz}\) bis \(300\,{\rm GHz}\)
- Anwendungen: Fund, Mikrowellenherd, Radar
- Größenordnung der Wellenlänge: zwischen \(1\,{\rm m}\) und \(1\,{\rm mm}\)
- Größenordnung der Frequenz: von \(300\,{\rm MHz}\) bis \(300\,{\rm GHz}\)
- Anwendungen: Fund, Mikrowellenherd, Radar
Energie im Gravitationsfeld
- Die Arbeit im Gravitationsfeld ist \(W =E_{\rm{pot,End}}-E_{\rm{pot,Anfang}}= - G \cdot m \cdot M \cdot \frac{1}{{{r_E}}} + G \cdot m \cdot M \cdot \frac{1}{{{r_A}}}\)
- Im freien Weltall besitzen Körper keine potentielle Energie, es gilt: \(E_{\rm{pot,}\infty}=0\).
- Allgemein gilt für die Fluchtgeschwindigkeit von einem Körper \(v_{\rm{Flucht}}=\sqrt {\frac{{2 \cdot G \cdot M}}{r}}\)
- Die Fluchtgeschwindigkeit der Erde ist \(v_{\rm Flucht}= 11{,}2\,\rm{\frac{km}{s}}\)
- Die Arbeit im Gravitationsfeld ist \(W =E_{\rm{pot,End}}-E_{\rm{pot,Anfang}}= - G \cdot m \cdot M \cdot \frac{1}{{{r_E}}} + G \cdot m \cdot M \cdot \frac{1}{{{r_A}}}\)
- Im freien Weltall besitzen Körper keine potentielle Energie, es gilt: \(E_{\rm{pot,}\infty}=0\).
- Allgemein gilt für die Fluchtgeschwindigkeit von einem Körper \(v_{\rm{Flucht}}=\sqrt {\frac{{2 \cdot G \cdot M}}{r}}\)
- Die Fluchtgeschwindigkeit der Erde ist \(v_{\rm Flucht}= 11{,}2\,\rm{\frac{km}{s}}\)
HERTZSPRUNG-RUSSELL-Diagramm
- Das Hertzsprung-Russell-Diagramm zeigt grob die Verteilung der Sterne über ihre Entwicklungsstadien.
- Im Diagramm zeigen sich verschiedene charakteristische Bereiche.
- An der Position eines Sterns im HRD kann man meist seinen Entwicklungszustand ablesen.
- Das Hertzsprung-Russell-Diagramm zeigt grob die Verteilung der Sterne über ihre Entwicklungsstadien.
- Im Diagramm zeigen sich verschiedene charakteristische Bereiche.
- An der Position eines Sterns im HRD kann man meist seinen Entwicklungszustand ablesen.
Strahlensatz
Bei einem von einer Punktlichtquelle ausgehendem, divergenten Lichtbündel sind die Entfernung g von der Quelle und die Breite B des Lichtbündels direkt proportional zueinander.\[\frac{B_1}{g_1}=\frac{B_2}{g_2}\qquad \rm{bzw.} \qquad \frac{B}{g}=\rm{const.}\]
Bei einem von einer Punktlichtquelle ausgehendem, divergenten Lichtbündel sind die Entfernung g von der Quelle und die Breite B des Lichtbündels direkt proportional zueinander.\[\frac{B_1}{g_1}=\frac{B_2}{g_2}\qquad \rm{bzw.} \qquad \frac{B}{g}=\rm{const.}\]
Gangunterschied bei zwei Quellen
- Zur Berechnung des Gangunterschiedes muss unterschieden werden, ob Sender und Empfänger nahe oder weit entfernt voneinander sind im Vergleich zu ihrem Abstand.
- Bei Reflexion am optisch dichteren Medium muss zusätzlich der Phasensprung berücksichtigt werden.
- Zur Berechnung des Gangunterschiedes muss unterschieden werden, ob Sender und Empfänger nahe oder weit entfernt voneinander sind im Vergleich zu ihrem Abstand.
- Bei Reflexion am optisch dichteren Medium muss zusätzlich der Phasensprung berücksichtigt werden.
HERTZsche Versuche
- Hertz erzeugte nicht-sichtbare elektromagnetische Wellen mithilfe eines Sendedipols.
- Die so erzeugten elektromagnetischen Wellen verhalten sich in Bezug auf Reflexion, Brechung und Bündelung ähnlich wie Licht.
- Bei Licht handelt es sich um eine elektromagnetische Welle.
- Hertz erzeugte nicht-sichtbare elektromagnetische Wellen mithilfe eines Sendedipols.
- Die so erzeugten elektromagnetischen Wellen verhalten sich in Bezug auf Reflexion, Brechung und Bündelung ähnlich wie Licht.
- Bei Licht handelt es sich um eine elektromagnetische Welle.
Monat
- Ein synodischer Monat ist die Zeit von einer Mondphase bis zu ihrer Wiederkehr.
- Ein siderischer Monat ist die Zeit für einen vollen Umlauf des Mondes um die Erde gegenüber dem Sternenhintergrund.
- Ein synodischer Monat ist die Zeit von einer Mondphase bis zu ihrer Wiederkehr.
- Ein siderischer Monat ist die Zeit für einen vollen Umlauf des Mondes um die Erde gegenüber dem Sternenhintergrund.
Licht als Teilchen - Vorstellungen von Newton
- In Teilchenvorstellung von Licht besteht das Licht aus winzigen Teilchen (Korpuskeln).
- Geradlinige Lichtausbreitung und Reflexion können mit dem Modell erklärt werden.
- Beugung und Interferenz können nicht mithilfe des Modell erklärt werden.
- In Teilchenvorstellung von Licht besteht das Licht aus winzigen Teilchen (Korpuskeln).
- Geradlinige Lichtausbreitung und Reflexion können mit dem Modell erklärt werden.
- Beugung und Interferenz können nicht mithilfe des Modell erklärt werden.
Kosmische Hintergrundstrahlung
- Diese kosmische Hintergrundstrahlung ist kurz nach dem Urknall entstandene Strahlung im Mikrowellenbereich.
- Ihr Auftreten stützt das Standardmodell (Urknalltheorie), da sie theoretisch vorhergesagt wurde.
- Fluktuationen in der Hintergrundstrahlung geben Hinweise auf die Zusammensetzung des Universums aus Materie, Dunkler Materie und Dunkler Energie.
- Diese kosmische Hintergrundstrahlung ist kurz nach dem Urknall entstandene Strahlung im Mikrowellenbereich.
- Ihr Auftreten stützt das Standardmodell (Urknalltheorie), da sie theoretisch vorhergesagt wurde.
- Fluktuationen in der Hintergrundstrahlung geben Hinweise auf die Zusammensetzung des Universums aus Materie, Dunkler Materie und Dunkler Energie.
Optischer DOPPLER-Effekt
- Bewegt sich der Sender auf den Empfänger zu, so ist die vom Empfänger wahrgenommene Wellenlänge \(\lambda'\) kürzer.
- Bewegt sich der Sender vom Empfänger weg, so ist die vom Empfänger wahrgenommene Wellenlänge \(\lambda'\) länger.
- Der Effekt führt zur Rot- bzw. Blauverschiebung von Spektren, was genutzt wird, um Planetenbewegungen zu untersuchen.
- Bewegt sich der Sender auf den Empfänger zu, so ist die vom Empfänger wahrgenommene Wellenlänge \(\lambda'\) kürzer.
- Bewegt sich der Sender vom Empfänger weg, so ist die vom Empfänger wahrgenommene Wellenlänge \(\lambda'\) länger.
- Der Effekt führt zur Rot- bzw. Blauverschiebung von Spektren, was genutzt wird, um Planetenbewegungen zu untersuchen.
Lichtbrechung - Fortführung
- Der Zusammenhang zwischen Einfallswinkel und Brechungswinkel kann gut grafisch dargestellt werden.
- Entsprechende Diagramme können in beide Richtungen gelesen werden. Sowohl Übergänge von dicht zu dünn als auch von dünn zu dicht zu dünn können abgelesen werden.
- Der Zusammenhang zwischen Einfallswinkel und Brechungswinkel kann gut grafisch dargestellt werden.
- Entsprechende Diagramme können in beide Richtungen gelesen werden. Sowohl Übergänge von dicht zu dünn als auch von dünn zu dicht zu dünn können abgelesen werden.
Himmelskugel
- Die Himmelskugel ist eine scheinbare, den Beobachter allseitig umgebende Kugel mit beliebig großem Radius, auf welche die Gestirne projiziert werden, sodass Positionsangaben möglich sind.
- Himmelsnordpol, Himmelssüdpol, Himmelsäquator entsprechen ihren irdischen Gegenstücken, sind nur auf die Himmelskugel projiziert.
- Himmelsdistanzen werden stets in Winkeln angegeben, da ist die Polhöhe \(h_{\rm{P}}\) gleich der geographischen Breite \(\varphi\) des Beobachters und die Äquatorhöhe \(h_{\rm{A}}=90^{\circ}-\varphi \)
- Die Himmelskugel ist eine scheinbare, den Beobachter allseitig umgebende Kugel mit beliebig großem Radius, auf welche die Gestirne projiziert werden, sodass Positionsangaben möglich sind.
- Himmelsnordpol, Himmelssüdpol, Himmelsäquator entsprechen ihren irdischen Gegenstücken, sind nur auf die Himmelskugel projiziert.
- Himmelsdistanzen werden stets in Winkeln angegeben, da ist die Polhöhe \(h_{\rm{P}}\) gleich der geographischen Breite \(\varphi\) des Beobachters und die Äquatorhöhe \(h_{\rm{A}}=90^{\circ}-\varphi \)
Lauf der Gestirne
- Die Deklination \(\varphi\) gibt die Höhe über der Äquatorebene an.
- Die obere Kulmination beschreibt die größte Höhe eines Sterns, die untere Kulmination die geringste Höhe.
- Sterne, die sich am Beobachtungsort immer über der Horizontebene befinden, nennt man Zirkumpolarsterne.
- Die Deklination \(\varphi\) gibt die Höhe über der Äquatorebene an.
- Die obere Kulmination beschreibt die größte Höhe eines Sterns, die untere Kulmination die geringste Höhe.
- Sterne, die sich am Beobachtungsort immer über der Horizontebene befinden, nennt man Zirkumpolarsterne.
Sonnenspektrum
- Das von der Sonne kommende Licht ähnelt dem Spektrum eines schwarzen Körpers.
- Das Maximum der Strahlung liegt bei etwa \(550\,\rm{nm}\), also im Bereich von blau-grünem Licht.
- Im Sonnenspektrum zeigen sich viele Absorptionslinien (FRAUNHOFER-Linien), die Rückschlüsse z.B. auf die Zusammensetzung unsere Atmosphäre ermöglichen.
- Das von der Sonne kommende Licht ähnelt dem Spektrum eines schwarzen Körpers.
- Das Maximum der Strahlung liegt bei etwa \(550\,\rm{nm}\), also im Bereich von blau-grünem Licht.
- Im Sonnenspektrum zeigen sich viele Absorptionslinien (FRAUNHOFER-Linien), die Rückschlüsse z.B. auf die Zusammensetzung unsere Atmosphäre ermöglichen.
Astronomische Koordinatensysteme
- Für die Orientierung auf der Himmelskugel gibt es zwei unterschiedliche Beschreibungen: das Horizontsystem und das Äquatorialsystem.
- Das Horizontsystem wird bei Fernrohren genutzt, deren Grundplatte parallel zum Erdboden steht, also azimutal montiert ist.
- Das Äquatorialsystem wird genutzt, wenn sich das Fernrohr um eine Achse parallel zur Erdachse dreht, also parallaktisch (äquatorial) montiert ist.
- Für die Orientierung auf der Himmelskugel gibt es zwei unterschiedliche Beschreibungen: das Horizontsystem und das Äquatorialsystem.
- Das Horizontsystem wird bei Fernrohren genutzt, deren Grundplatte parallel zum Erdboden steht, also azimutal montiert ist.
- Das Äquatorialsystem wird genutzt, wenn sich das Fernrohr um eine Achse parallel zur Erdachse dreht, also parallaktisch (äquatorial) montiert ist.
Mondphasen
- Die Mondphasen entstehen dadurch, dass sich der Mond um die Erde dreht und je nach Position ein bestimmter Teil seiner Oberfläche Licht in Richtung der Erde reflektiert.
- Ein Mondphasenzyklus dauert in etwa 29,5 Tage und beinhaltet Neumond, zunehmenden Halbmond, Vollmond und abnehmenden Halbmond.
- Die Mondphasen entstehen dadurch, dass sich der Mond um die Erde dreht und je nach Position ein bestimmter Teil seiner Oberfläche Licht in Richtung der Erde reflektiert.
- Ein Mondphasenzyklus dauert in etwa 29,5 Tage und beinhaltet Neumond, zunehmenden Halbmond, Vollmond und abnehmenden Halbmond.
Mondfinsternis
- Bei einer Mondfinsternis steht die Erde zwischen Sonne und Mond
- Bei einer Mondfinsternis ist der Mond also im Schatten der Erde
- Bei einer Mondfinsternis steht die Erde zwischen Sonne und Mond
- Bei einer Mondfinsternis ist der Mond also im Schatten der Erde
Sonnenfinsternis
- Bei einer Sonnenfinsternis befindet sich der Mond zwischen Sonne und Erde
- Man unterscheidet meist zwischen totaler und partieller Sonnenfinsternis
- Im Kernschatten des Mondes befindet sich immer nur ein kleiner Teil der Erdoberfläche
- Bei einer Sonnenfinsternis befindet sich der Mond zwischen Sonne und Erde
- Man unterscheidet meist zwischen totaler und partieller Sonnenfinsternis
- Im Kernschatten des Mondes befindet sich immer nur ein kleiner Teil der Erdoberfläche
Bahnen im Gravitationsfeld
- Schießt man auf der Erde von einem hohen Turm einen Körper parallel zur Erdoberfläche ab, so gibt es je nach Abschussgeschwindigkeit \(v\) vier mögliche Bahnkurven.
- Für kleine \(v\) trifft der Körper die Erde.
- Wenn \(v\) so groß ist, dass das \(F_{\rm{Z}}=F_{\rm{Z}}\) gilt, ergibt sich eine Kreisbahn.
- Bei größerem \(v\) ergeben sich zunächst Ellipsenbahnen und bei \(v>v_{\rm{Flucht}}\) Hyperbelbahnen und der Körper entfernt sich.
- Schießt man auf der Erde von einem hohen Turm einen Körper parallel zur Erdoberfläche ab, so gibt es je nach Abschussgeschwindigkeit \(v\) vier mögliche Bahnkurven.
- Für kleine \(v\) trifft der Körper die Erde.
- Wenn \(v\) so groß ist, dass das \(F_{\rm{Z}}=F_{\rm{Z}}\) gilt, ergibt sich eine Kreisbahn.
- Bei größerem \(v\) ergeben sich zunächst Ellipsenbahnen und bei \(v>v_{\rm{Flucht}}\) Hyperbelbahnen und der Körper entfernt sich.