Direkt zum Inhalt
Suchergebnisse 31 - 60 von 73

Wärmeleitung

Grundwissen

  • Bei der Wärmeleitung bewegt sich nur die Wärme durch den Körper, die einzelnen Teilchen, aus denen der Körper besteht, bleiben dagegen an ihrem Platz
  • Wärmeleitung tritt deshalb meistens beim Wärmetransport in und zwischen Festkörpern auf
  • Metalle sind gute Wärmeleiter, Flüssigkeiten und Gase dagegen sind schlechte Wärmeleiter

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei der Wärmeleitung bewegt sich nur die Wärme durch den Körper, die einzelnen Teilchen, aus denen der Körper besteht, bleiben dagegen an ihrem Platz
  • Wärmeleitung tritt deshalb meistens beim Wärmetransport in und zwischen Festkörpern auf
  • Metalle sind gute Wärmeleiter, Flüssigkeiten und Gase dagegen sind schlechte Wärmeleiter

Zum Artikel Zu den Aufgaben

Wärmemitführung

Grundwissen

  • Bei der Wärmemitführung (Wärmeströmung, Konvektion) bewegt sich die Wärme mit den einzelnen Teilchen, aus denen der Körper besteht, durch den Körper hindurch - es findet also auch ein Materietransport statt
  • Wärmemitführung tritt in der Regel nur in Flüssigkeiten und Gasen auf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei der Wärmemitführung (Wärmeströmung, Konvektion) bewegt sich die Wärme mit den einzelnen Teilchen, aus denen der Körper besteht, durch den Körper hindurch - es findet also auch ein Materietransport statt
  • Wärmemitführung tritt in der Regel nur in Flüssigkeiten und Gasen auf.

Zum Artikel Zu den Aufgaben

Treibhauseffekt

Grundwissen

  • Man unterscheidet zwischen natürlichem und vom Menschen gemachten Treibhauseffekt.
  • Der natürliche Treibhauseffekt macht die Erde erst lebenswert.
  • Der menschengemachte Treibhauseffekt durch Ausstoß von Treibhausgasen sorgt für eine weitere Erderwärmung mit vielen negativen Folgen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man unterscheidet zwischen natürlichem und vom Menschen gemachten Treibhauseffekt.
  • Der natürliche Treibhauseffekt macht die Erde erst lebenswert.
  • Der menschengemachte Treibhauseffekt durch Ausstoß von Treibhausgasen sorgt für eine weitere Erderwärmung mit vielen negativen Folgen.

Zum Artikel Zu den Aufgaben

Energie-Impuls-Beziehung

Grundwissen

  • Klassisch ist die Beziehung zwischen kinetischer Energie und Impuls \({E_{\rm{kin}}} = \frac{{{p^2}}}{{2 \cdot m}}\)
  • Relativistisch gilt zwischen Gesamtenergie, Ruheenergie und Impuls die Beziehung \(E = \sqrt{E_0^2 + (c\cdot p)^2}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Klassisch ist die Beziehung zwischen kinetischer Energie und Impuls \({E_{\rm{kin}}} = \frac{{{p^2}}}{{2 \cdot m}}\)
  • Relativistisch gilt zwischen Gesamtenergie, Ruheenergie und Impuls die Beziehung \(E = \sqrt{E_0^2 + (c\cdot p)^2}\)

Zum Artikel Zu den Aufgaben

Relativistische Energie

Grundwissen

  • Die relativistische Gesamtenergie eines Körpers ist \(E(v)=m_{\rm{rel}}\cdot c^2=\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}}\cdot c^2\)
  • Die Ruheenergie eines Körpers ist \(E_0=m_0\cdot c^2\)
  • Die kinetische Energie ist die Differenz der Gesamtenergie \(E(v)\) und der Ruheenergie \(E_0\), also \(E_{\rm{kin}}=\left( {\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}} - {m_0}} \right) \cdot {c^2}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die relativistische Gesamtenergie eines Körpers ist \(E(v)=m_{\rm{rel}}\cdot c^2=\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}}\cdot c^2\)
  • Die Ruheenergie eines Körpers ist \(E_0=m_0\cdot c^2\)
  • Die kinetische Energie ist die Differenz der Gesamtenergie \(E(v)\) und der Ruheenergie \(E_0\), also \(E_{\rm{kin}}=\left( {\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}} - {m_0}} \right) \cdot {c^2}\)

Zum Artikel Zu den Aufgaben

Längenkontraktion

Grundwissen

  • Für bewegte Beobachter sind Strecken verkürzt.
  • Für die Längenkontraktion gilt: \(\Delta x' = \Delta x \cdot \sqrt{1 - \left(\frac{v}{c}\right)^2}\)
  • Die Längenkontraktion findet nur in Bewegungsrichtung statt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für bewegte Beobachter sind Strecken verkürzt.
  • Für die Längenkontraktion gilt: \(\Delta x' = \Delta x \cdot \sqrt{1 - \left(\frac{v}{c}\right)^2}\)
  • Die Längenkontraktion findet nur in Bewegungsrichtung statt.

Zum Artikel Zu den Aufgaben

EINSTEINs Postulate

Grundwissen

  • Erstes Postulat (Relativitätsprinzip): Alle Inertialsysteme sind bezüglich aller physikalischen Gesetze gleichberechtigt.
  • Zweites Postulat (Konstanz der Lichtgeschwindigkeit): Die Vakuumlichtgeschwindigkeit \(c\) ist in allen Inertialsystemen gleich groß.

Zum Artikel
Grundwissen

  • Erstes Postulat (Relativitätsprinzip): Alle Inertialsysteme sind bezüglich aller physikalischen Gesetze gleichberechtigt.
  • Zweites Postulat (Konstanz der Lichtgeschwindigkeit): Die Vakuumlichtgeschwindigkeit \(c\) ist in allen Inertialsystemen gleich groß.

Zum Artikel Zu den Aufgaben

Geschwindigkeitsbetrachtung

Grundwissen

  • Klassische können Geschwindigkeiten von einem bewegten Bezugssystem und einer Bewegung innerhalb einfach addiert werden, um die Geschwindigkeit zu ermitteln, die man im ruhenden Bezugssystem messen würde.
  • Die Konstanz der Lichtgeschwindigkeit hat zur Folge, dass diese einfache Addition nicht richtig sein kann.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Klassische können Geschwindigkeiten von einem bewegten Bezugssystem und einer Bewegung innerhalb einfach addiert werden, um die Geschwindigkeit zu ermitteln, die man im ruhenden Bezugssystem messen würde.
  • Die Konstanz der Lichtgeschwindigkeit hat zur Folge, dass diese einfache Addition nicht richtig sein kann.

Zum Artikel Zu den Aufgaben

Inertialsystem

Grundwissen

  • Ein Inertialsystem ist ein Bezugssystem, in dem ein kräftefreier Körper in Ruhe verharrt oder sich geradlinig-gleichförmig bewegt.
  • Alle Systeme, die sich geradlinig-gleichförmig gegenüber einem Inertialsystem bewegen, sind ebenfalls Inertialsysteme.

Zum Artikel
Grundwissen

  • Ein Inertialsystem ist ein Bezugssystem, in dem ein kräftefreier Körper in Ruhe verharrt oder sich geradlinig-gleichförmig bewegt.
  • Alle Systeme, die sich geradlinig-gleichförmig gegenüber einem Inertialsystem bewegen, sind ebenfalls Inertialsysteme.

Zum Artikel Zu den Aufgaben

Effekte

Grundwissen

  • Zeitdilatation: Eine bewegte Uhr geht langsamer als eine gleichartige im Ruhesystem!
  • Gleichzeitigkeit ist relativ und hängt davon ab, von welchem Bezugssystem aus die Beobachtung erfolgt.
  • Längenkontraktion: Ein bewegter Maßstab ist in Bewegungsrichtung kürzer als im Ruhesystem!

Zum Artikel
Grundwissen

  • Zeitdilatation: Eine bewegte Uhr geht langsamer als eine gleichartige im Ruhesystem!
  • Gleichzeitigkeit ist relativ und hängt davon ab, von welchem Bezugssystem aus die Beobachtung erfolgt.
  • Längenkontraktion: Ein bewegter Maßstab ist in Bewegungsrichtung kürzer als im Ruhesystem!

Zum Artikel Zu den Aufgaben

Zeitdilatation

Grundwissen

  • Zeitdilatation: Eine relativ zu einem Beobachter bewegte Uhr geht aus der Sicht des Beobachters langsamer als ein Satz synchronisierter Uhren im "Beobachter-System".
  • Vereinfacht: Bewegte Uhren gehen langsamer.
  • Der Zusammenhang zwischen Zeit \(\Delta t\) im ruhenden und \(\Delta t'\) im bewegten System ist \(\Delta t = \frac{\Delta t'}{\sqrt{1 - (\frac{v}{c})^2}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zeitdilatation: Eine relativ zu einem Beobachter bewegte Uhr geht aus der Sicht des Beobachters langsamer als ein Satz synchronisierter Uhren im "Beobachter-System".
  • Vereinfacht: Bewegte Uhren gehen langsamer.
  • Der Zusammenhang zwischen Zeit \(\Delta t\) im ruhenden und \(\Delta t'\) im bewegten System ist \(\Delta t = \frac{\Delta t'}{\sqrt{1 - (\frac{v}{c})^2}}\)

Zum Artikel Zu den Aufgaben

Gleichzeitigkeit

Grundwissen

  • In einem Inertialsystem finden zwei Ereignisse an zwei verschiedenen Orten gleichzeitig statt, wenn sie von einem Lichtblitz ausgelöst werden können, der genau aus der Mitte zwischen ihren Orten ausgeht.
  • Finden zwei Ereignisse in einem Inertialsystem gleichzeitig statt, so finden sie in einem zweiten, gegenüber dem ersten Inertialsystem bewegten Inertialsystem zu verschiedenen Zeiten statt.
  • Auch Gleichzeitigkeit ist relativ.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In einem Inertialsystem finden zwei Ereignisse an zwei verschiedenen Orten gleichzeitig statt, wenn sie von einem Lichtblitz ausgelöst werden können, der genau aus der Mitte zwischen ihren Orten ausgeht.
  • Finden zwei Ereignisse in einem Inertialsystem gleichzeitig statt, so finden sie in einem zweiten, gegenüber dem ersten Inertialsystem bewegten Inertialsystem zu verschiedenen Zeiten statt.
  • Auch Gleichzeitigkeit ist relativ.

Zum Artikel Zu den Aufgaben

Relativistische Masse und Impuls

Grundwissen

  • Auch die Masse eines Teilchens und sein Impuls unterliegen relativistischen Effekten.
  • Die relativistische Masse  nimmt mit der Geschwindigkeit \(v\) eines Teilchens stark zu, es gilt: \(m_{\rm{rel}}=\frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}\)
  • Für den relativistischen Impuls gilt \(p = m_{\rm{rel}}\cdot v    \Rightarrow     p = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \cdot v\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auch die Masse eines Teilchens und sein Impuls unterliegen relativistischen Effekten.
  • Die relativistische Masse  nimmt mit der Geschwindigkeit \(v\) eines Teilchens stark zu, es gilt: \(m_{\rm{rel}}=\frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}\)
  • Für den relativistischen Impuls gilt \(p = m_{\rm{rel}}\cdot v    \Rightarrow     p = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \cdot v\)

Zum Artikel Zu den Aufgaben

Gesetz von AMONTONS

Grundwissen

  • Wird eine feste Menge (konstante Teilchenzahl \(N\)) eines Idealen Gases auf einem konstanten Volumen \(V\) gehalten, während sich die Temperatur oder der Druck der Gasmenge ändern, so spricht man von einer isochoren Zustandsänderung der Gasmenge.
  • Bei derartigen isochoren Zustandsänderungen ist der Druck \(p\) proportional zur Temperatur \(T\)\[p \sim T\;\;\;\rm{bzw.}\;\;\;\frac{p}{T} \;\rm{ist\;konstant}\;\;\;\rm{bzw.}\;\;\;\frac{p_1}{T_1} = \frac{p_2}{T_2}\]

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wird eine feste Menge (konstante Teilchenzahl \(N\)) eines Idealen Gases auf einem konstanten Volumen \(V\) gehalten, während sich die Temperatur oder der Druck der Gasmenge ändern, so spricht man von einer isochoren Zustandsänderung der Gasmenge.
  • Bei derartigen isochoren Zustandsänderungen ist der Druck \(p\) proportional zur Temperatur \(T\)\[p \sim T\;\;\;\rm{bzw.}\;\;\;\frac{p}{T} \;\rm{ist\;konstant}\;\;\;\rm{bzw.}\;\;\;\frac{p_1}{T_1} = \frac{p_2}{T_2}\]

Zum Artikel Zu den Aufgaben

Volumenänderung von Flüssigkeiten

Grundwissen

  • Flüssigkeiten dehnen sich in der Regel beim Erwärmen unterschiedlich stark aus.
  • Die Volumenänderung hängt vom Raumausdehnungskoeffizienten der Flüssigkeit ab.
  • Wasser verhält sich bei niedrigen Temperaturen knapp über dem Gefrierpunkt anomal.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Flüssigkeiten dehnen sich in der Regel beim Erwärmen unterschiedlich stark aus.
  • Die Volumenänderung hängt vom Raumausdehnungskoeffizienten der Flüssigkeit ab.
  • Wasser verhält sich bei niedrigen Temperaturen knapp über dem Gefrierpunkt anomal.

Zum Artikel Zu den Aufgaben

Volumenänderung von Gasen

Grundwissen

  • Gase dehnen sich beim Erwärmen stark aus.
  • Verschiedene Gase zeigen bei ihrem Ausdehnungsverhalten kaum Unterschiede.
  • Bei Messungen ist auf konstanten Druck zu achten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Gase dehnen sich beim Erwärmen stark aus.
  • Verschiedene Gase zeigen bei ihrem Ausdehnungsverhalten kaum Unterschiede.
  • Bei Messungen ist auf konstanten Druck zu achten.

Zum Artikel Zu den Aufgaben

Anomalie des Wassers

Grundwissen

  • Wasser besitzt seine größte Dichte bei 4 °C.
  • Unterhalb von 4 °C nimmt die Dichte wieder ab.
  • Wasser besitzt eine größere Dichte als Eis.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wasser besitzt seine größte Dichte bei 4 °C.
  • Unterhalb von 4 °C nimmt die Dichte wieder ab.
  • Wasser besitzt eine größere Dichte als Eis.

Zum Artikel Zu den Aufgaben

Erklärungsprobleme des Photoeffekts

Grundwissen

Einige Aspekte des Photoeffektes können mit dem klassischen Wellenmodell nur schwerlich erklärt werden:

  • Die Existenz einer oberen Grenzwellenlänge oberhalb derer auch bei gesteigerter Intensität keine Elektronen mehr ausgelöst werden.
  • Trägheitsloses Einsetzen des Photostroms

Das Photonenmodell liefert für dieses Aspekte plausible Erklärungen.

Zum Artikel
Grundwissen

Einige Aspekte des Photoeffektes können mit dem klassischen Wellenmodell nur schwerlich erklärt werden:

  • Die Existenz einer oberen Grenzwellenlänge oberhalb derer auch bei gesteigerter Intensität keine Elektronen mehr ausgelöst werden.
  • Trägheitsloses Einsetzen des Photostroms

Das Photonenmodell liefert für dieses Aspekte plausible Erklärungen.

Zum Artikel Zu den Aufgaben

Spezifische Wärmekapazität

Grundwissen

  • Die spezifische Wärmekapazität ist eine Materialkonstante.
  • Die spezifische Wärmekapazitätist ein Maß für diejenige Energie, die man benötigt, um \(1\,\rm{kg}\) eines Stoffes um \(1\,\rm{K}\) zu erwärmen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die spezifische Wärmekapazität ist eine Materialkonstante.
  • Die spezifische Wärmekapazitätist ein Maß für diejenige Energie, die man benötigt, um \(1\,\rm{kg}\) eines Stoffes um \(1\,\rm{K}\) zu erwärmen.

Zum Artikel Zu den Aufgaben

Spezifische Schmelz- und Verdampfungswärme

Grundwissen

  • Wenn die Bindungen der Teilchen bei einem Übergang loser wird, muss Energie hinzugefügt werden (fest->flüssig, flüssig->gasförmig, fest->gasförmig).
  • Wenn die Bindungen der Teilchen bei einem Übergang fester wird, wird Energie frei (gasförmig->flüssig, flüssig->fest, gasförmig->fest).
  • Die spezifische Schmelz- bzw. Verdampfungswärme ist eine Materialkonstante, die häufig in \(\rm{\frac{J}{kg}}\) angegeben wird.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn die Bindungen der Teilchen bei einem Übergang loser wird, muss Energie hinzugefügt werden (fest->flüssig, flüssig->gasförmig, fest->gasförmig).
  • Wenn die Bindungen der Teilchen bei einem Übergang fester wird, wird Energie frei (gasförmig->flüssig, flüssig->fest, gasförmig->fest).
  • Die spezifische Schmelz- bzw. Verdampfungswärme ist eine Materialkonstante, die häufig in \(\rm{\frac{J}{kg}}\) angegeben wird.

Zum Artikel Zu den Aufgaben

Wärmekraftmaschine, Kältemaschine und Wärmepumpe

Grundwissen

  • Wärmekraftmaschinen (z.B. Dampfmaschine oder Benzinmotor) nutzen Temperaturdifferenzen aus, um hiermit Arbeit \(W\) zu verrichten.
  • Dabei fließt eine Wärmemenge \(Q\) von einem Reservoir höherer Temperatur in ein Gebiet mit niedrigerer Temperatur.
  • Kältemaschinen (z.B. Kühlschrank) und Wärmepumpen verrichten Arbeit \(W\), um eine Wärmemenge \(Q\) von niedrigem auf ein höheres Energieniveau zu transportieren.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wärmekraftmaschinen (z.B. Dampfmaschine oder Benzinmotor) nutzen Temperaturdifferenzen aus, um hiermit Arbeit \(W\) zu verrichten.
  • Dabei fließt eine Wärmemenge \(Q\) von einem Reservoir höherer Temperatur in ein Gebiet mit niedrigerer Temperatur.
  • Kältemaschinen (z.B. Kühlschrank) und Wärmepumpen verrichten Arbeit \(W\), um eine Wärmemenge \(Q\) von niedrigem auf ein höheres Energieniveau zu transportieren.

Zum Artikel Zu den Aufgaben

Strahlungshaushalt der Erde

Grundwissen

  • Als Mittelwert für die Energieeinstrahlung durch die Sonne gelten \(341\,\rm{\frac{W}{m^2}}\), also etwa ein Viertel der Solarkonstanten \(S_0\)
  • Insgesamt ist der Strahlungshaushalt immer in etwa ausgeglichen: Die eingestrahlte Energie entspricht in etwa der abgestrahlten Energie.
  • Beim Strahlungshaushalt der Erde müssen viele Variablen berücksichtigt werden, Darstellungen sind daher immer vereinfacht.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Mittelwert für die Energieeinstrahlung durch die Sonne gelten \(341\,\rm{\frac{W}{m^2}}\), also etwa ein Viertel der Solarkonstanten \(S_0\)
  • Insgesamt ist der Strahlungshaushalt immer in etwa ausgeglichen: Die eingestrahlte Energie entspricht in etwa der abgestrahlten Energie.
  • Beim Strahlungshaushalt der Erde müssen viele Variablen berücksichtigt werden, Darstellungen sind daher immer vereinfacht.

Zum Artikel Zu den Aufgaben

Beugung und Interferenz von Elektronen an Kristallgittern

Grundwissen

  • De BROGLIEs theoretische Überlegungen zur Wellennatur von Materie konnten 1927 von den amerikanischen Physikern Clinton Joseph DAVISSON und Lester Halbert GERMER sowie unabhängig davon vom englischen Physiker George Paget THOMSON durch die Elektronenbeugung an Kristallen bestätigt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • De BROGLIEs theoretische Überlegungen zur Wellennatur von Materie konnten 1927 von den amerikanischen Physikern Clinton Joseph DAVISSON und Lester Halbert GERMER sowie unabhängig davon vom englischen Physiker George Paget THOMSON durch die Elektronenbeugung an Kristallen bestätigt werden.

Zum Artikel Zu den Aufgaben

Beugung und Interferenz von Elektronen außerhalb von Materie

Grundwissen

  • Die Wellennatur von Materie konnte zwischen 1955 und 1957 von MÖLLENSTEDT und seinen Schülern DÜKER und JÖNSSON auch beim Durchgang von Elektronen durch ein elektrisches Biprisma und sogar durch einen materiellen Doppelspalt bestätigt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Wellennatur von Materie konnte zwischen 1955 und 1957 von MÖLLENSTEDT und seinen Schülern DÜKER und JÖNSSON auch beim Durchgang von Elektronen durch ein elektrisches Biprisma und sogar durch einen materiellen Doppelspalt bestätigt werden.

Zum Artikel Zu den Aufgaben

Geschwindigkeitsaddition

Grundwissen

  • Ist \(u\) die Geschwindigkeit eines Körpers im System S und \(v\) die Geschwindigkeit des Systems S' in Bezug auf S und \(u'\) die Geschwindigkeit des Körpers im System S', dann gilt der Zusammenhang \(u = \frac{{u' + v}}{{1 + \frac{{u' \cdot v}}{{{c^2}}}}}\).

 

 

 

Zum Artikel
Grundwissen

  • Ist \(u\) die Geschwindigkeit eines Körpers im System S und \(v\) die Geschwindigkeit des Systems S' in Bezug auf S und \(u'\) die Geschwindigkeit des Körpers im System S', dann gilt der Zusammenhang \(u = \frac{{u' + v}}{{1 + \frac{{u' \cdot v}}{{{c^2}}}}}\).

 

 

 

Zum Artikel Zu den Aufgaben

Wesenszug 1: Statistische Vorhersagbarkeit

Grundwissen

  • Die Bahn eines einzelnen Photons beim Doppelspaltexperiment kann grundsätzlich nicht genau vorhergesagt werden.
  • Quantenphysikalische Ereignisse sind nicht deterministisch, unterliegen aber statistischen Gesetzmäßigkeiten.
  • Ein einfaches Beispiel hierzu ist das Verhalten von Photonen an einem Strahlteiler.

Zum Artikel
Grundwissen

  • Die Bahn eines einzelnen Photons beim Doppelspaltexperiment kann grundsätzlich nicht genau vorhergesagt werden.
  • Quantenphysikalische Ereignisse sind nicht deterministisch, unterliegen aber statistischen Gesetzmäßigkeiten.
  • Ein einfaches Beispiel hierzu ist das Verhalten von Photonen an einem Strahlteiler.

Zum Artikel Zu den Aufgaben

Wesenszug 2: Fähigkeit zur Interferenz

Grundwissen

  • Quantenobjekte können mit sich selbst interferieren
  • Für die Ausbildung eines Interferenzmusters in einem Experiment müssen mehrere klassisch denkbare Wege existieren.
  • In der Quantenphysik wird keiner der klassischen Wege tatsächlich realisiert.
  • Quantenobjekten kann meist kein exakter Ort zugeschrieben werden, sondern statistische Aufenthaltswahrscheinlichkeiten.

Zum Artikel
Grundwissen

  • Quantenobjekte können mit sich selbst interferieren
  • Für die Ausbildung eines Interferenzmusters in einem Experiment müssen mehrere klassisch denkbare Wege existieren.
  • In der Quantenphysik wird keiner der klassischen Wege tatsächlich realisiert.
  • Quantenobjekten kann meist kein exakter Ort zugeschrieben werden, sondern statistische Aufenthaltswahrscheinlichkeiten.

Zum Artikel Zu den Aufgaben

Wesenszug 3: Eindeutige Messergebnisse

Grundwissen

  • Quantenmechanische Messungen haben aktiven Charakter: Messungen zwingen ein System einen der möglichen Messwerte anzunehmen.
  • Messergebnisse sind stets eindeutig, auch wenn das Quantenobjekt vor der Messung in einem Zustand war, der unbestimmt bezüglich der gemessenen Größe ist.
  • Man unterscheidet in der Quantenmechanik, ob ein Objekt eine Eigenschaft besitzt oder man diese Eigenschaft misst.

Zum Artikel
Grundwissen

  • Quantenmechanische Messungen haben aktiven Charakter: Messungen zwingen ein System einen der möglichen Messwerte anzunehmen.
  • Messergebnisse sind stets eindeutig, auch wenn das Quantenobjekt vor der Messung in einem Zustand war, der unbestimmt bezüglich der gemessenen Größe ist.
  • Man unterscheidet in der Quantenmechanik, ob ein Objekt eine Eigenschaft besitzt oder man diese Eigenschaft misst.

Zum Artikel Zu den Aufgaben

Wesenszug 4: Komplementarität

Grundwissen

  • Bei einer Ortsmessung auf Höhe der Spalte bildet sich beim Doppelspaltexperiment kein Interferenzmuster auf dem Schirm aus.
  • Interferenzmuster und Unterscheidbarkeit der klassisch denkbaren Möglichkeiten schließen sich aus (Komplementarität).

Zum Artikel
Grundwissen

  • Bei einer Ortsmessung auf Höhe der Spalte bildet sich beim Doppelspaltexperiment kein Interferenzmuster auf dem Schirm aus.
  • Interferenzmuster und Unterscheidbarkeit der klassisch denkbaren Möglichkeiten schließen sich aus (Komplementarität).

Zum Artikel Zu den Aufgaben

Wärmelehre

Allgemeines Gasgesetz

  • Warum transportieren Taucher Sauerstoff in Metallflaschen?
  • Was geschieht, wenn man Luft immer weiter abkühlt?
  • Warum benutzt man im Weltall Gasthermometer?

Zum Themenbereich
Themenbereich