Direkt zum Inhalt
Suchergebnisse 151 - 180 von 346

Feder-Schwere-Pendel

Grundwissen

  • Ein Feder-Schwere-Pendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = \hat{y} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega } = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{y} \) der Schwingung und dem Ortsfaktor \(g\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Feder-Schwere-Pendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = \hat{y} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega } = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{y} \) der Schwingung und dem Ortsfaktor \(g\).

Zum Artikel Zu den Aufgaben

Einseitiger Hebel und Drehmoment

Grundwissen

  • Beim einseitigen Hebel greifen Kräfte nur auf eine Seite der Drehachse an, z.B. am Unterarm oder an einem Schraubenschlüssel.
  • Ein einseitiger Hebel ist im Gleichgewicht, wenn die Summe der Produkte \(F\cdot a\) aller wirkenden Kräfte gleich null ist.
  • Das Produkt aus Kraft \(F\) und Hebelarm \(a\) wird auch als Drehmoment \(M\) bezeichnet: \(M=F\cdot a\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim einseitigen Hebel greifen Kräfte nur auf eine Seite der Drehachse an, z.B. am Unterarm oder an einem Schraubenschlüssel.
  • Ein einseitiger Hebel ist im Gleichgewicht, wenn die Summe der Produkte \(F\cdot a\) aller wirkenden Kräfte gleich null ist.
  • Das Produkt aus Kraft \(F\) und Hebelarm \(a\) wird auch als Drehmoment \(M\) bezeichnet: \(M=F\cdot a\).

Zum Artikel Zu den Aufgaben

Wellrad

Grundwissen

  • Ein Wellrad kann physikalisch als Hebel aufgefasst werden.
  • Im Gleichgewichtsfall gilt am Wellrad \(F_1\cdot r_1=F_2\cdot r_2\).
  • Die genaue Richtung der Kraft spielt beim Wellrad nur eine untergeordnete Rolle, der Hebelarm entspricht immer dem Radius des Rades.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Wellrad kann physikalisch als Hebel aufgefasst werden.
  • Im Gleichgewichtsfall gilt am Wellrad \(F_1\cdot r_1=F_2\cdot r_2\).
  • Die genaue Richtung der Kraft spielt beim Wellrad nur eine untergeordnete Rolle, der Hebelarm entspricht immer dem Radius des Rades.

Zum Artikel Zu den Aufgaben

Zentraler unelastischer Stoß

Grundwissen

  • Beim unelastischen Stoß bleibt lediglich der Impuls erhalten.
  • Ein Teil der Bewegungsenergie wird beim Stoß in Wärme oder Verformung umgewandelt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim unelastischen Stoß bleibt lediglich der Impuls erhalten.
  • Ein Teil der Bewegungsenergie wird beim Stoß in Wärme oder Verformung umgewandelt.

Zum Artikel Zu den Aufgaben

Rückstoß

Grundwissen

  • Bei einem Rückstoß ist die kinetische Energie nach dem Stoß größer als vor dem Stoß
  • Dies ist möglich, wenn bspw. innere Energie durch eine chemische Reaktion frei wird.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einem Rückstoß ist die kinetische Energie nach dem Stoß größer als vor dem Stoß
  • Dies ist möglich, wenn bspw. innere Energie durch eine chemische Reaktion frei wird.

Zum Artikel Zu den Aufgaben

Kräfte an der schiefen Ebene (rechnerisch)

Grundwissen

Überlegungen am rechtwinkligen Dreieck ermöglichen eine rechnerische Addition bzw. Zerlegung von Kräften - insbesondere auch an der schiefen Ebene.

Für den Betrag \(F_{\rm{G,\parallel}}\) der parallel zur Ebene wirkende Hangabtriebskraft gilt \(F_{\rm{G,\parallel}}=F_{\rm G}\cdot \frac{h}{l}=F_{\rm G}\cdot \sin(\alpha)\).

Für den Betrag \(F_{\rm{G,\bot}}\) der senkrecht zur Ebene wirkende Normalkomponente der Gewichtskraft gilt \(F_{\rm{G,\bot}}=F_{\rm G}\cdot \frac{b}{l}=F_{\rm G}\cdot \cos(\alpha)\).

Zum Artikel Zu den Aufgaben
Grundwissen

Überlegungen am rechtwinkligen Dreieck ermöglichen eine rechnerische Addition bzw. Zerlegung von Kräften - insbesondere auch an der schiefen Ebene.

Für den Betrag \(F_{\rm{G,\parallel}}\) der parallel zur Ebene wirkende Hangabtriebskraft gilt \(F_{\rm{G,\parallel}}=F_{\rm G}\cdot \frac{h}{l}=F_{\rm G}\cdot \sin(\alpha)\).

Für den Betrag \(F_{\rm{G,\bot}}\) der senkrecht zur Ebene wirkende Normalkomponente der Gewichtskraft gilt \(F_{\rm{G,\bot}}=F_{\rm G}\cdot \frac{b}{l}=F_{\rm G}\cdot \cos(\alpha)\).

Zum Artikel Zu den Aufgaben

Gravitationskraft

Grundwissen

  • Die Gravitationskraft \(\vec F_{\rm{G}}\) zwischen zwei punktförmigen Massen \(m_1\) und \(m_2\) liegt auf der Verbindungslinie der beiden Massen. Der Betrag \(F_{\rm{G}}\) der Gravitationskraft ist proportional zu den Massen \(m_1\) sowie \(m_2\) und umgekehrt proportional zum Quadrat des Abstands \(r\) der Massen. Er berechnet sich durch \(F_{\rm{G}} = G \cdot \frac{m_1 \cdot m_2}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}674 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Die Gravitationskraft \(\vec F_{\rm{G}}\) auf eine punktförmige Masse \(m\) an der Erdoberfläche ist senkrecht zur Erdoberfläche gerichtet. Der Betrag \(F_{\rm{G}}\) der Gravitationskraft ist proportional zur Masse \(m\). Er berechnet sich durch \(F_{\rm{G}}=m \cdot g\). In der Praxis benutzen wir in Deutschland den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Gravitationskraft \(\vec F_{\rm{G}}\) zwischen zwei punktförmigen Massen \(m_1\) und \(m_2\) liegt auf der Verbindungslinie der beiden Massen. Der Betrag \(F_{\rm{G}}\) der Gravitationskraft ist proportional zu den Massen \(m_1\) sowie \(m_2\) und umgekehrt proportional zum Quadrat des Abstands \(r\) der Massen. Er berechnet sich durch \(F_{\rm{G}} = G \cdot \frac{m_1 \cdot m_2}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}674 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Die Gravitationskraft \(\vec F_{\rm{G}}\) auf eine punktförmige Masse \(m\) an der Erdoberfläche ist senkrecht zur Erdoberfläche gerichtet. Der Betrag \(F_{\rm{G}}\) der Gravitationskraft ist proportional zur Masse \(m\). Er berechnet sich durch \(F_{\rm{G}}=m \cdot g\). In der Praxis benutzen wir in Deutschland den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben

Energieentwertung durch Reibung

Grundwissen

  • Bei der Betrachtung von mechanischen Systemen wird die Reibung oft vernachlässigt.
  • In realen Systemen tritt (außer im Weltraum) allerdings immer Reibung auf.
  • Das Auftreten von Reibung ist mit einer irreversiblen Energieentwertung verbunden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei der Betrachtung von mechanischen Systemen wird die Reibung oft vernachlässigt.
  • In realen Systemen tritt (außer im Weltraum) allerdings immer Reibung auf.
  • Das Auftreten von Reibung ist mit einer irreversiblen Energieentwertung verbunden.

Zum Artikel Zu den Aufgaben

Stabile Kreisbahnen im Gravitationsfeld

Grundwissen

Bewegt sich ein Trabant auf einer stabilen Kreisbahn im Gravitationsfeld eines Zentralkörpers, dann beträgt

  • die potenzielle Energie des Systems Zentralkörper-Trabant \({E_{{\rm{pot}}}}\left( r \right) =  - G \cdot m \cdot M \cdot \frac{1}{r}\)
  • die kinetische Energie des Trabanten \({E_{{\rm{kin}}}} = \frac{1}{2} \cdot \left| {{E_{{\rm{pot}}}}} \right|\)
  • die Gesamtenergie des Systems Zentralkörper-Trabant \({E_{{\rm{ges}}}} = {\frac{1}{2} \cdot {E_{{\rm{pot}}}}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

Bewegt sich ein Trabant auf einer stabilen Kreisbahn im Gravitationsfeld eines Zentralkörpers, dann beträgt

  • die potenzielle Energie des Systems Zentralkörper-Trabant \({E_{{\rm{pot}}}}\left( r \right) =  - G \cdot m \cdot M \cdot \frac{1}{r}\)
  • die kinetische Energie des Trabanten \({E_{{\rm{kin}}}} = \frac{1}{2} \cdot \left| {{E_{{\rm{pot}}}}} \right|\)
  • die Gesamtenergie des Systems Zentralkörper-Trabant \({E_{{\rm{ges}}}} = {\frac{1}{2} \cdot {E_{{\rm{pot}}}}}\)

Zum Artikel Zu den Aufgaben

Arbeit im Weg-Kraft-Diagramm

Grundwissen

  • Die Formel $W=F\cdot s$ zur Berechnung der Arbeit gilt nur, wenn die wirkende Kraft konstant ist.
  • Ändern sich die wirkenden Kräfte hilft die Interpretation von Arbeit als Fläche im Weg-Kraft-Diagramm.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Formel $W=F\cdot s$ zur Berechnung der Arbeit gilt nur, wenn die wirkende Kraft konstant ist.
  • Ändern sich die wirkenden Kräfte hilft die Interpretation von Arbeit als Fläche im Weg-Kraft-Diagramm.

Zum Artikel Zu den Aufgaben

Übersicht über die Strömungslehre

Grundwissen

  • Die Strömungslehre beschäftigt sich mit der Bewegung von Flüssigkeiten und Gasen.
  • Dabei unterscheidet man die Bewegung von Flüssigkeiten (Hydrodynamik) und die von Gasen (Aerodynamik).
  • Die Strömungslehre hat vielfältige Anwendungsmöglichkeiten im Alltag.

Zum Artikel
Grundwissen

  • Die Strömungslehre beschäftigt sich mit der Bewegung von Flüssigkeiten und Gasen.
  • Dabei unterscheidet man die Bewegung von Flüssigkeiten (Hydrodynamik) und die von Gasen (Aerodynamik).
  • Die Strömungslehre hat vielfältige Anwendungsmöglichkeiten im Alltag.

Zum Artikel Zu den Aufgaben

2. Newtonsches Gesetz (Aktionsprinzip)

Grundwissen

  • Wirkt auf einen Körper eine resultierende Kraft \(\vec{F}\), so wird der Körper in die Richtung der Kraft beschleunigt.
  • Es gilt \(\vec{F}=m\cdot \vec{a}=m\cdot \frac{\Delta \vec{v}}{\Delta t}\)
  • Die Einheit der Kraft ist 1 Newton: \(\left[ F \right] = \left[ m \right] \cdot \left[ a \right] = 1\,{\rm{kg}} \cdot 1\,\frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{kg}} \cdot \frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{N}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wirkt auf einen Körper eine resultierende Kraft \(\vec{F}\), so wird der Körper in die Richtung der Kraft beschleunigt.
  • Es gilt \(\vec{F}=m\cdot \vec{a}=m\cdot \frac{\Delta \vec{v}}{\Delta t}\)
  • Die Einheit der Kraft ist 1 Newton: \(\left[ F \right] = \left[ m \right] \cdot \left[ a \right] = 1\,{\rm{kg}} \cdot 1\,\frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{kg}} \cdot \frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{N}}\)

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung von Strömungen

Grundwissen

  • Zentrale Größen zur Beschreibung von Strömungen sind die Geschwindigkeit\(v\), der Druck \(p\), die Dichte \(\rho\), die Temperatur \(T\) und die dynamische Viskosität \(\eta\).

Zum Artikel
Grundwissen

  • Zentrale Größen zur Beschreibung von Strömungen sind die Geschwindigkeit\(v\), der Druck \(p\), die Dichte \(\rho\), die Temperatur \(T\) und die dynamische Viskosität \(\eta\).

Zum Artikel Zu den Aufgaben

Kontinuitätsgleichungen

Grundwissen

  • Die Größe \(\frac{m}{t}=\rho\cdot v\cdot A\) bzw. infinitesimal \(\frac{dm}{dt}=\dot{m}\) bezeichnet man als Massenstrom.
  • Bei einer stationären Strömung ist wegen der Massenerhaltung der Massenstrom \(\dot{m}=\frac{m}{t}=\rho \cdot A \cdot v\) an allen Querschnittsflächen konstant.
  • Bei inkompressiblen Fluiden ist der Massenstrom \(\dot{m}\) proportional zum Volumenstrom \(\dot{V}\). Der Proportionalitätsfaktor ist die Dichte \(\rho\) des inkompressiblen Fluids.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Größe \(\frac{m}{t}=\rho\cdot v\cdot A\) bzw. infinitesimal \(\frac{dm}{dt}=\dot{m}\) bezeichnet man als Massenstrom.
  • Bei einer stationären Strömung ist wegen der Massenerhaltung der Massenstrom \(\dot{m}=\frac{m}{t}=\rho \cdot A \cdot v\) an allen Querschnittsflächen konstant.
  • Bei inkompressiblen Fluiden ist der Massenstrom \(\dot{m}\) proportional zum Volumenstrom \(\dot{V}\). Der Proportionalitätsfaktor ist die Dichte \(\rho\) des inkompressiblen Fluids.

Zum Artikel Zu den Aufgaben

BERNOULLI-Gleichung

Grundwissen

  • Die BERNOULLI-Gleichung liefert einen Zusammenhang zwischen Strömungsgeschwindigkeit \(v\) und Druck \(p\).
  • Die BERNOULLI-Gleichung bei stationärer, verlustfreier Strömung eines inkompressiblen Fluides ist \(\rho \cdot g \cdot h+\frac{1}{2} \cdot \rho \cdot v^2 + p=\rm{konst.}\).
  • Die Summe der potentiellen Energie, der kinetischen Energie und der Druckenergie (also der verrichteten Arbeit) entlang der Stromröhre ist erhalten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die BERNOULLI-Gleichung liefert einen Zusammenhang zwischen Strömungsgeschwindigkeit \(v\) und Druck \(p\).
  • Die BERNOULLI-Gleichung bei stationärer, verlustfreier Strömung eines inkompressiblen Fluides ist \(\rho \cdot g \cdot h+\frac{1}{2} \cdot \rho \cdot v^2 + p=\rm{konst.}\).
  • Die Summe der potentiellen Energie, der kinetischen Energie und der Druckenergie (also der verrichteten Arbeit) entlang der Stromröhre ist erhalten.

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung einer Kreisbewegung

Grundwissen

  • Das (Dreh-)Zentrum \(Z\) ist der Mittelpunkt der Kreisbahn.
  • Der Bahnradius \(r\) ist die (konstant bleibende) Entfernung des Körpers zum Drehzentrum.
  • Die Umlaufdauer \(T\) gibt an, wie lange ein Körper für einen vollständigen Umlauf der Kreisbahn benötigt.
  • Die Frequenz \(f\) ist der Kehrwert der Umlaufdauer: \(f=\frac{1}{T}\). Sie gibt an, wie viele Umläufe ein Körper pro Zeiteinheit absolviert.
  • Mit \(s\) bezeichnen wir die Länge der (Bahn-)Strecke, die der Körper seit dem Start der Kreisbewegung auf der Kreisbahn zurückgelegt hat.
  • Mit \(\varphi\) bezeichnen wir die Weite des Drehwinkels, den der Bahnradius seit dem Start der Kreisbewegung überstrichen hat.
  • Winkel werden bei der Beschreibung von Kreisbewegungen meist im Bogenmaß angegeben. Eine volle Umdrehung von \(360^\circ\) entspricht im Bogenmaß dem Wert \(2\pi\)
  • Es gilt \(s = \varphi  \cdot r \quad {\rm{bzw.}} \quad \varphi  = \frac{s}{r}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das (Dreh-)Zentrum \(Z\) ist der Mittelpunkt der Kreisbahn.
  • Der Bahnradius \(r\) ist die (konstant bleibende) Entfernung des Körpers zum Drehzentrum.
  • Die Umlaufdauer \(T\) gibt an, wie lange ein Körper für einen vollständigen Umlauf der Kreisbahn benötigt.
  • Die Frequenz \(f\) ist der Kehrwert der Umlaufdauer: \(f=\frac{1}{T}\). Sie gibt an, wie viele Umläufe ein Körper pro Zeiteinheit absolviert.
  • Mit \(s\) bezeichnen wir die Länge der (Bahn-)Strecke, die der Körper seit dem Start der Kreisbewegung auf der Kreisbahn zurückgelegt hat.
  • Mit \(\varphi\) bezeichnen wir die Weite des Drehwinkels, den der Bahnradius seit dem Start der Kreisbewegung überstrichen hat.
  • Winkel werden bei der Beschreibung von Kreisbewegungen meist im Bogenmaß angegeben. Eine volle Umdrehung von \(360^\circ\) entspricht im Bogenmaß dem Wert \(2\pi\)
  • Es gilt \(s = \varphi  \cdot r \quad {\rm{bzw.}} \quad \varphi  = \frac{s}{r}\)

Zum Artikel Zu den Aufgaben

Sinken, Schweben, Steigen, Schwimmen

Grundwissen

  • Das Zusammenspiel von Gewichtskraft \(\vec F_{\rm{G}}\) eines Körpers und seiner Auftriebskraft \(\vec F_{\rm{A}}\) im Medium bestimmen, ob der Körper sinkt, schwebt, steigt oder schwimmt.
  • Beim Schwimmen taucht ein Körpers gerade so weit in ein Medium ein, sodass gilt \({F_{\rm{A}}} = {F_{\rm{G}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Zusammenspiel von Gewichtskraft \(\vec F_{\rm{G}}\) eines Körpers und seiner Auftriebskraft \(\vec F_{\rm{A}}\) im Medium bestimmen, ob der Körper sinkt, schwebt, steigt oder schwimmt.
  • Beim Schwimmen taucht ein Körpers gerade so weit in ein Medium ein, sodass gilt \({F_{\rm{A}}} = {F_{\rm{G}}}\).

Zum Artikel Zu den Aufgaben

Zeitmessung mit Hilfe eines Fadenpendels

Weblink

Ein kurzes Video erklärt, wie das Fadenpendel in der katholischen Kirche zur universellen Zeitbestimmung genutzt wurde. Außerdem werden weitere Methoden zur Zeitbestimmung, z.B. mit einem Wanderstab, und ein Selbstversuch zur Exponentialschreibweise von Distanzen erläutert. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität Köln.

Zur Übersicht Zum externen Weblink
Weblink

Ein kurzes Video erklärt, wie das Fadenpendel in der katholischen Kirche zur universellen Zeitbestimmung genutzt wurde. Außerdem werden weitere Methoden zur Zeitbestimmung, z.B. mit einem Wanderstab, und ein Selbstversuch zur Exponentialschreibweise von Distanzen erläutert. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität Köln.

Zur Übersicht Zum externen Weblink

Kräfte in Atomen und Kraftzerlegung im Kampfsport

Weblink

Nach einer kurzen Erläuterung über Kräfte zwischen Atomen, zeigt dieses Video die Kräftezerlegung am Beispiel eines Wing-Tsjun-Kampfes. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität zu Köln.

Zur Übersicht Zum externen Weblink
Weblink

Nach einer kurzen Erläuterung über Kräfte zwischen Atomen, zeigt dieses Video die Kräftezerlegung am Beispiel eines Wing-Tsjun-Kampfes. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität zu Köln.

Zur Übersicht Zum externen Weblink

Kraftzerlegung beim Kirchenbau, im Kampfsport und in Brücken

Weblink

In diesem kurzen, aber gut erklärten Video, geht es um wirkende Kräfte beim Kirchenbau, ein Beispiel der Kraftzerlegung im Kampfsport und Brückenkonstruktionen mit Kraftdreiecken. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität zu Köln.

Zur Übersicht Zum externen Weblink
Weblink

In diesem kurzen, aber gut erklärten Video, geht es um wirkende Kräfte beim Kirchenbau, ein Beispiel der Kraftzerlegung im Kampfsport und Brückenkonstruktionen mit Kraftdreiecken. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität zu Köln.

Zur Übersicht Zum externen Weblink

Newtonsche Axiome

Weblink

Die drei Newtonschen Axiome werden anhand von Beispielen aus der Astronomie, dem Kampfsport und dem Alltag erklärt. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität zu Köln.

Zur Übersicht Zum externen Weblink
Weblink

Die drei Newtonschen Axiome werden anhand von Beispielen aus der Astronomie, dem Kampfsport und dem Alltag erklärt. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität zu Köln.

Zur Übersicht Zum externen Weblink

Geschwindigkeit, Beschleunigung und Impuls

Weblink

Dieses Video schließt an die Erläuterungen zu den Newtonschen Axiomen an und erklärt die Kräfte, Beschleunigungen und Impulse, die den One-Inch-Punch aus der chinesischen Kampfkunst Wing-Tsjun ermöglichen. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität Köln.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video schließt an die Erläuterungen zu den Newtonschen Axiomen an und erklärt die Kräfte, Beschleunigungen und Impulse, die den One-Inch-Punch aus der chinesischen Kampfkunst Wing-Tsjun ermöglichen. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität Köln.

Zur Übersicht Zum externen Weblink

Video zum Foucaultschen Pendel

Weblink

Ein kurzes Video, das den Versuchsaufbau des Foucaultschen Pendels aus den Blickwinkeln verschiedener Koordinatensysteme zeigt. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Ein kurzes Video, das den Versuchsaufbau des Foucaultschen Pendels aus den Blickwinkeln verschiedener Koordinatensysteme zeigt. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Video zum Versuch Kugelstoßpendel

Weblink

Dieses Video zeigt das Kugelstoßpendel (Newtonpendel) aus verschiedenen Perspektiven und eignet sich zur Erklärung des elastischen Stoßes. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video zeigt das Kugelstoßpendel (Newtonpendel) aus verschiedenen Perspektiven und eignet sich zur Erklärung des elastischen Stoßes. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Video eines Monochords

Weblink

Das Video zeigt ein Monochord, und wie sich die Tonhöhen mit der Veränderung der Länge der freischwingenden Saite verändert. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Das Video zeigt ein Monochord, und wie sich die Tonhöhen mit der Veränderung der Länge der freischwingenden Saite verändert. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Video zum Effekt eines Resonanzkastens

Weblink

Das Video veranschaulicht den Effekt eines Resonanzkastens auf die Lautstärke der Schwingung einer Stimmgabel. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Das Video veranschaulicht den Effekt eines Resonanzkastens auf die Lautstärke der Schwingung einer Stimmgabel. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Video zum Auftrieb eines schwimmenden Balls

Weblink

Das Video zeigt einen schwimmenden Ball in einem Behältnis voll Wasser. Anhand der verdrängten Menge Flüssigkeit kann der, auf den Ball wirkende, Auftrieb bestimmt werden. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Das Video zeigt einen schwimmenden Ball in einem Behältnis voll Wasser. Anhand der verdrängten Menge Flüssigkeit kann der, auf den Ball wirkende, Auftrieb bestimmt werden. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Video eines gekoppelten Fadenpendels

Weblink

Das Video zeigt den Aufbau eines gekoppelten Pendels aus mehreren Fadenpendeln. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Das Video zeigt den Aufbau eines gekoppelten Pendels aus mehreren Fadenpendeln. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Video zu Hebeln und Drehbewegungen im Alltag und in der Kampfkunst

Weblink

Dieses Video zeigt anschauliche Beispiele für die Nutzung von Drehmomenten im Alltag und in der Kampfkunst. Es regt zum Mitmachen und Mitrechnen an. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität zu Köln.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video zeigt anschauliche Beispiele für die Nutzung von Drehmomenten im Alltag und in der Kampfkunst. Es regt zum Mitmachen und Mitrechnen an. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität zu Köln.

Zur Übersicht Zum externen Weblink

Video zur Schwingung einer Stimmgabel

Weblink

Dieses kurze Video zeigt die Schwingungskurven einer Stimmgabel auf einer mit Ruß bedeckten Glasplatte. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Dieses kurze Video zeigt die Schwingungskurven einer Stimmgabel auf einer mit Ruß bedeckten Glasplatte. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink