Direkt zum Inhalt
Suchergebnisse 241 - 270 von 1303

Einseitiger Hebel und Drehmoment

Grundwissen

  • Beim einseitigen Hebel greifen Kräfte nur auf eine Seite der Drehachse an, z.B. am Unterarm oder an einem Schraubenschlüssel.
  • Ein einseitiger Hebel ist im Gleichgewicht, wenn die Summe der Produkte \(F\cdot a\) aller wirkenden Kräfte gleich null ist.
  • Das Produkt aus Kraft \(F\) und Hebelarm \(a\) wird auch als Drehmoment \(M\) bezeichnet: \(M=F\cdot a\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim einseitigen Hebel greifen Kräfte nur auf eine Seite der Drehachse an, z.B. am Unterarm oder an einem Schraubenschlüssel.
  • Ein einseitiger Hebel ist im Gleichgewicht, wenn die Summe der Produkte \(F\cdot a\) aller wirkenden Kräfte gleich null ist.
  • Das Produkt aus Kraft \(F\) und Hebelarm \(a\) wird auch als Drehmoment \(M\) bezeichnet: \(M=F\cdot a\).

Zum Artikel Zu den Aufgaben

Wellrad

Grundwissen

  • Ein Wellrad kann physikalisch als Hebel aufgefasst werden.
  • Im Gleichgewichtsfall gilt am Wellrad \(F_1\cdot r_1=F_2\cdot r_2\).
  • Die genaue Richtung der Kraft spielt beim Wellrad nur eine untergeordnete Rolle, der Hebelarm entspricht immer dem Radius des Rades.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Wellrad kann physikalisch als Hebel aufgefasst werden.
  • Im Gleichgewichtsfall gilt am Wellrad \(F_1\cdot r_1=F_2\cdot r_2\).
  • Die genaue Richtung der Kraft spielt beim Wellrad nur eine untergeordnete Rolle, der Hebelarm entspricht immer dem Radius des Rades.

Zum Artikel Zu den Aufgaben

Zentraler unelastischer Stoß

Grundwissen

  • Beim unelastischen Stoß bleibt lediglich der Impuls erhalten.
  • Ein Teil der Bewegungsenergie wird beim Stoß in Wärme oder Verformung umgewandelt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim unelastischen Stoß bleibt lediglich der Impuls erhalten.
  • Ein Teil der Bewegungsenergie wird beim Stoß in Wärme oder Verformung umgewandelt.

Zum Artikel Zu den Aufgaben

Rückstoß

Grundwissen

  • Bei einem Rückstoß ist die kinetische Energie nach dem Stoß größer als vor dem Stoß
  • Dies ist möglich, wenn bspw. innere Energie durch eine chemische Reaktion frei wird.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einem Rückstoß ist die kinetische Energie nach dem Stoß größer als vor dem Stoß
  • Dies ist möglich, wenn bspw. innere Energie durch eine chemische Reaktion frei wird.

Zum Artikel Zu den Aufgaben

Kräfte an der schiefen Ebene (rechnerisch)

Grundwissen

Überlegungen am rechtwinkligen Dreieck ermöglichen eine rechnerische Addition bzw. Zerlegung von Kräften - insbesondere auch an der schiefen Ebene.

Für den Betrag \(F_{\rm{G,\parallel}}\) der parallel zur Ebene wirkende Hangabtriebskraft gilt \(F_{\rm{G,\parallel}}=F_{\rm G}\cdot \frac{h}{l}=F_{\rm G}\cdot \sin(\alpha)\).

Für den Betrag \(F_{\rm{G,\bot}}\) der senkrecht zur Ebene wirkende Normalkomponente der Gewichtskraft gilt \(F_{\rm{G,\bot}}=F_{\rm G}\cdot \frac{b}{l}=F_{\rm G}\cdot \cos(\alpha)\).

Zum Artikel Zu den Aufgaben
Grundwissen

Überlegungen am rechtwinkligen Dreieck ermöglichen eine rechnerische Addition bzw. Zerlegung von Kräften - insbesondere auch an der schiefen Ebene.

Für den Betrag \(F_{\rm{G,\parallel}}\) der parallel zur Ebene wirkende Hangabtriebskraft gilt \(F_{\rm{G,\parallel}}=F_{\rm G}\cdot \frac{h}{l}=F_{\rm G}\cdot \sin(\alpha)\).

Für den Betrag \(F_{\rm{G,\bot}}\) der senkrecht zur Ebene wirkende Normalkomponente der Gewichtskraft gilt \(F_{\rm{G,\bot}}=F_{\rm G}\cdot \frac{b}{l}=F_{\rm G}\cdot \cos(\alpha)\).

Zum Artikel Zu den Aufgaben

Wesenszug 1: Statistische Vorhersagbarkeit

Grundwissen

  • Die Bahn eines einzelnen Photons beim Doppelspaltexperiment kann grundsätzlich nicht genau vorhergesagt werden.
  • Quantenphysikalische Ereignisse sind nicht deterministisch, unterliegen aber statistischen Gesetzmäßigkeiten.
  • Ein einfaches Beispiel hierzu ist das Verhalten von Photonen an einem Strahlteiler.

Zum Artikel
Grundwissen

  • Die Bahn eines einzelnen Photons beim Doppelspaltexperiment kann grundsätzlich nicht genau vorhergesagt werden.
  • Quantenphysikalische Ereignisse sind nicht deterministisch, unterliegen aber statistischen Gesetzmäßigkeiten.
  • Ein einfaches Beispiel hierzu ist das Verhalten von Photonen an einem Strahlteiler.

Zum Artikel Zu den Aufgaben

Wesenszug 2: Fähigkeit zur Interferenz

Grundwissen

  • Quantenobjekte können mit sich selbst interferieren
  • Für die Ausbildung eines Interferenzmusters in einem Experiment müssen mehrere klassisch denkbare Wege existieren.
  • In der Quantenphysik wird keiner der klassischen Wege tatsächlich realisiert.
  • Quantenobjekten kann meist kein exakter Ort zugeschrieben werden, sondern statistische Aufenthaltswahrscheinlichkeiten.

Zum Artikel
Grundwissen

  • Quantenobjekte können mit sich selbst interferieren
  • Für die Ausbildung eines Interferenzmusters in einem Experiment müssen mehrere klassisch denkbare Wege existieren.
  • In der Quantenphysik wird keiner der klassischen Wege tatsächlich realisiert.
  • Quantenobjekten kann meist kein exakter Ort zugeschrieben werden, sondern statistische Aufenthaltswahrscheinlichkeiten.

Zum Artikel Zu den Aufgaben

Wesenszug 3: Eindeutige Messergebnisse

Grundwissen

  • Quantenmechanische Messungen haben aktiven Charakter: Messungen zwingen ein System einen der möglichen Messwerte anzunehmen.
  • Messergebnisse sind stets eindeutig, auch wenn das Quantenobjekt vor der Messung in einem Zustand war, der unbestimmt bezüglich der gemessenen Größe ist.
  • Man unterscheidet in der Quantenmechanik, ob ein Objekt eine Eigenschaft besitzt oder man diese Eigenschaft misst.

Zum Artikel
Grundwissen

  • Quantenmechanische Messungen haben aktiven Charakter: Messungen zwingen ein System einen der möglichen Messwerte anzunehmen.
  • Messergebnisse sind stets eindeutig, auch wenn das Quantenobjekt vor der Messung in einem Zustand war, der unbestimmt bezüglich der gemessenen Größe ist.
  • Man unterscheidet in der Quantenmechanik, ob ein Objekt eine Eigenschaft besitzt oder man diese Eigenschaft misst.

Zum Artikel Zu den Aufgaben

Wesenszug 4: Komplementarität

Grundwissen

  • Bei einer Ortsmessung auf Höhe der Spalte bildet sich beim Doppelspaltexperiment kein Interferenzmuster auf dem Schirm aus.
  • Interferenzmuster und Unterscheidbarkeit der klassisch denkbaren Möglichkeiten schließen sich aus (Komplementarität).

Zum Artikel
Grundwissen

  • Bei einer Ortsmessung auf Höhe der Spalte bildet sich beim Doppelspaltexperiment kein Interferenzmuster auf dem Schirm aus.
  • Interferenzmuster und Unterscheidbarkeit der klassisch denkbaren Möglichkeiten schließen sich aus (Komplementarität).

Zum Artikel Zu den Aufgaben

Gravitationskraft

Grundwissen

  • Die Gravitationskraft \(\vec F_{\rm{G}}\) zwischen zwei punktförmigen Massen \(m_1\) und \(m_2\) liegt auf der Verbindungslinie der beiden Massen. Der Betrag \(F_{\rm{G}}\) der Gravitationskraft ist proportional zu den Massen \(m_1\) sowie \(m_2\) und umgekehrt proportional zum Quadrat des Abstands \(r\) der Massen. Er berechnet sich durch \(F_{\rm{G}} = G \cdot \frac{m_1 \cdot m_2}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}674 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Die Gravitationskraft \(\vec F_{\rm{G}}\) auf eine punktförmige Masse \(m\) an der Erdoberfläche ist senkrecht zur Erdoberfläche gerichtet. Der Betrag \(F_{\rm{G}}\) der Gravitationskraft ist proportional zur Masse \(m\). Er berechnet sich durch \(F_{\rm{G}}=m \cdot g\). In der Praxis benutzen wir in Deutschland den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Gravitationskraft \(\vec F_{\rm{G}}\) zwischen zwei punktförmigen Massen \(m_1\) und \(m_2\) liegt auf der Verbindungslinie der beiden Massen. Der Betrag \(F_{\rm{G}}\) der Gravitationskraft ist proportional zu den Massen \(m_1\) sowie \(m_2\) und umgekehrt proportional zum Quadrat des Abstands \(r\) der Massen. Er berechnet sich durch \(F_{\rm{G}} = G \cdot \frac{m_1 \cdot m_2}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}674 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Die Gravitationskraft \(\vec F_{\rm{G}}\) auf eine punktförmige Masse \(m\) an der Erdoberfläche ist senkrecht zur Erdoberfläche gerichtet. Der Betrag \(F_{\rm{G}}\) der Gravitationskraft ist proportional zur Masse \(m\). Er berechnet sich durch \(F_{\rm{G}}=m \cdot g\). In der Praxis benutzen wir in Deutschland den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben

Energieentwertung durch Reibung

Grundwissen

  • Bei der Betrachtung von mechanischen Systemen wird die Reibung oft vernachlässigt.
  • In realen Systemen tritt (außer im Weltraum) allerdings immer Reibung auf.
  • Das Auftreten von Reibung ist mit einer irreversiblen Energieentwertung verbunden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei der Betrachtung von mechanischen Systemen wird die Reibung oft vernachlässigt.
  • In realen Systemen tritt (außer im Weltraum) allerdings immer Reibung auf.
  • Das Auftreten von Reibung ist mit einer irreversiblen Energieentwertung verbunden.

Zum Artikel Zu den Aufgaben

Leiter und Nichtleiter

Grundwissen

  • Materialien können grob in zwei Kategorien eingeteilt werden: Leiter (z.B. Metalle) und Nichtleiter (z.B. Kunststoffe).
  • Ob ein Material Strom gut oder schlecht leitet kannst du mit einer Testschaltung prüfen.
  • Je mehr Salz im Wasser gelöst ist, desto besser leitet Wasser Strom.
  • Die meisten Gase leiten Strom nicht.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Materialien können grob in zwei Kategorien eingeteilt werden: Leiter (z.B. Metalle) und Nichtleiter (z.B. Kunststoffe).
  • Ob ein Material Strom gut oder schlecht leitet kannst du mit einer Testschaltung prüfen.
  • Je mehr Salz im Wasser gelöst ist, desto besser leitet Wasser Strom.
  • Die meisten Gase leiten Strom nicht.

Zum Artikel Zu den Aufgaben

Stabile Kreisbahnen im Gravitationsfeld

Grundwissen

Bewegt sich ein Trabant auf einer stabilen Kreisbahn im Gravitationsfeld eines Zentralkörpers, dann beträgt

  • die potenzielle Energie des Systems Zentralkörper-Trabant \({E_{{\rm{pot}}}}\left( r \right) =  - G \cdot m \cdot M \cdot \frac{1}{r}\)
  • die kinetische Energie des Trabanten \({E_{{\rm{kin}}}} = \frac{1}{2} \cdot \left| {{E_{{\rm{pot}}}}} \right|\)
  • die Gesamtenergie des Systems Zentralkörper-Trabant \({E_{{\rm{ges}}}} = {\frac{1}{2} \cdot {E_{{\rm{pot}}}}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

Bewegt sich ein Trabant auf einer stabilen Kreisbahn im Gravitationsfeld eines Zentralkörpers, dann beträgt

  • die potenzielle Energie des Systems Zentralkörper-Trabant \({E_{{\rm{pot}}}}\left( r \right) =  - G \cdot m \cdot M \cdot \frac{1}{r}\)
  • die kinetische Energie des Trabanten \({E_{{\rm{kin}}}} = \frac{1}{2} \cdot \left| {{E_{{\rm{pot}}}}} \right|\)
  • die Gesamtenergie des Systems Zentralkörper-Trabant \({E_{{\rm{ges}}}} = {\frac{1}{2} \cdot {E_{{\rm{pot}}}}}\)

Zum Artikel Zu den Aufgaben

Elektrische Ladung

Grundwissen

  • Die Einheit der elektrische Ladung, Symbol \(Q\), ist das Coulomb, Symbol \(\rm{C}\).
  • Ein Elektron besitzt die negative Elementarladung: \(q_{\rm{Elektron}}=-e = -1{,}6 \cdot 10^{-19}\,\rm{C}\).

Zum Artikel
Grundwissen

  • Die Einheit der elektrische Ladung, Symbol \(Q\), ist das Coulomb, Symbol \(\rm{C}\).
  • Ein Elektron besitzt die negative Elementarladung: \(q_{\rm{Elektron}}=-e = -1{,}6 \cdot 10^{-19}\,\rm{C}\).

Zum Artikel Zu den Aufgaben

Arbeit im Weg-Kraft-Diagramm

Grundwissen

  • Die Formel $W=F\cdot s$ zur Berechnung der Arbeit gilt nur, wenn die wirkende Kraft konstant ist.
  • Ändern sich die wirkenden Kräfte hilft die Interpretation von Arbeit als Fläche im Weg-Kraft-Diagramm.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Formel $W=F\cdot s$ zur Berechnung der Arbeit gilt nur, wenn die wirkende Kraft konstant ist.
  • Ändern sich die wirkenden Kräfte hilft die Interpretation von Arbeit als Fläche im Weg-Kraft-Diagramm.

Zum Artikel Zu den Aufgaben

Elektrische Kraft (2 Spezialfälle)

Grundwissen

  • Die elektrische Kraft \(\vec F_{\rm{el}}\) auf eine Punktladung \(q\) im Zwischenraum zweier entgegengesetzt geladener paralleler Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist senkrecht zu den Plattenoberflächen gerichtet. Der Betrag \(F_{\rm{el}}\) dieser elektrischen Kraft berechnet sich durch \(F_{\rm{el}} = \frac{1}{\varepsilon _0} \cdot \frac{\left| Q \right| \cdot \left|q \right|}{A}\).
  • Die elektrische Kraft \(\vec F_{\rm{C}}\) auf eine Punktladung \(q\) im Abstand \(r\) von einer ortsfesten Punktladung \(Q\) (COULOMB-Kraft) liegt auf der Verbindungsgeraden der beiden Ladungen. Der Betrag \(F_{\rm{C}}\) dieser COULOMB-Kraft berechnet sich durch \(F_{\rm{C}} = \frac{1}{4 \cdot \pi  \cdot \varepsilon _0} \cdot \frac{\left|Q\right| \cdot \left|q\right|}{{{r^2}}}\).
  • Dabei ist jeweils \(\varepsilon_0 = 8{,}854 \cdot {10^{-12}}\,\frac{\rm{A}\,\rm{s}}{\rm{V}\,\rm{m}}\) die elektrische Feldkonstante. 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die elektrische Kraft \(\vec F_{\rm{el}}\) auf eine Punktladung \(q\) im Zwischenraum zweier entgegengesetzt geladener paralleler Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist senkrecht zu den Plattenoberflächen gerichtet. Der Betrag \(F_{\rm{el}}\) dieser elektrischen Kraft berechnet sich durch \(F_{\rm{el}} = \frac{1}{\varepsilon _0} \cdot \frac{\left| Q \right| \cdot \left|q \right|}{A}\).
  • Die elektrische Kraft \(\vec F_{\rm{C}}\) auf eine Punktladung \(q\) im Abstand \(r\) von einer ortsfesten Punktladung \(Q\) (COULOMB-Kraft) liegt auf der Verbindungsgeraden der beiden Ladungen. Der Betrag \(F_{\rm{C}}\) dieser COULOMB-Kraft berechnet sich durch \(F_{\rm{C}} = \frac{1}{4 \cdot \pi  \cdot \varepsilon _0} \cdot \frac{\left|Q\right| \cdot \left|q\right|}{{{r^2}}}\).
  • Dabei ist jeweils \(\varepsilon_0 = 8{,}854 \cdot {10^{-12}}\,\frac{\rm{A}\,\rm{s}}{\rm{V}\,\rm{m}}\) die elektrische Feldkonstante. 

Zum Artikel Zu den Aufgaben

Elektrisches Feld und Feldliniendarstellung

Grundwissen

  • Im Raum um eine Ladung herrscht ein elektrisches Feld. Dieses elektrische Feld überträgt die Kraftwirkung dieser Ladung auf andere Ladungen.
  • Die elektrische Feldstärke ist definiert als der Quotient aus der elektrischen Kraft \({\vec F_{\rm{el}}}\) auf eine Probeladung und der Probeladung \(q\): \(\vec E = \frac{{{{\vec F}_{\rm{el}}}}}{q}\).
  • Für die elektrische Feldstärke \(\vec E\) im Raum um eine punktförmige Ladung \(Q\) gilt: Der Feldstärkevektor ist für eine positive Ladung radial von der Ladung weg und für eine negative Ladung radial zur Ladung hin orientiert, der Betrag ist umgekehrt proportional zum Quadrat des Abstands \(r\) und hat den Wert \(E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{\left|Q\right|}{r^2}\).
  • Die elektrische Feldstärke \(\vec E\) im Zwischenraum zweier entgegengesetzt geladener Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist konstant (homogenes elektrisches Feld). Der Feldstärkevektor steht senkrecht zu den Plattenoberflächen, ist von der positiv zur negativ geladenen Platte orientiert und hat den Betrag \(E = \frac{1}{\varepsilon_0} \cdot \frac{\left|Q\right|}{A}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Raum um eine Ladung herrscht ein elektrisches Feld. Dieses elektrische Feld überträgt die Kraftwirkung dieser Ladung auf andere Ladungen.
  • Die elektrische Feldstärke ist definiert als der Quotient aus der elektrischen Kraft \({\vec F_{\rm{el}}}\) auf eine Probeladung und der Probeladung \(q\): \(\vec E = \frac{{{{\vec F}_{\rm{el}}}}}{q}\).
  • Für die elektrische Feldstärke \(\vec E\) im Raum um eine punktförmige Ladung \(Q\) gilt: Der Feldstärkevektor ist für eine positive Ladung radial von der Ladung weg und für eine negative Ladung radial zur Ladung hin orientiert, der Betrag ist umgekehrt proportional zum Quadrat des Abstands \(r\) und hat den Wert \(E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{\left|Q\right|}{r^2}\).
  • Die elektrische Feldstärke \(\vec E\) im Zwischenraum zweier entgegengesetzt geladener Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist konstant (homogenes elektrisches Feld). Der Feldstärkevektor steht senkrecht zu den Plattenoberflächen, ist von der positiv zur negativ geladenen Platte orientiert und hat den Betrag \(E = \frac{1}{\varepsilon_0} \cdot \frac{\left|Q\right|}{A}\).

Zum Artikel Zu den Aufgaben

Homogenes elektrisches Feld

Grundwissen

  • Hat die elektrische Feldstärke \(\vec E\) in einem Raumgebiet immer die gleiche Richtung, die gleiche Orientierung und den gleichen Betrag, so sprechen wir von einem homogenen elektrischen Feld in diesem Raumgebiet.
  • Wichtigstes Beispiel für ein homogenes elektrisches Feld ist das Feld im Zwischenraum zweier entgegengesetzt geladener Platten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Hat die elektrische Feldstärke \(\vec E\) in einem Raumgebiet immer die gleiche Richtung, die gleiche Orientierung und den gleichen Betrag, so sprechen wir von einem homogenen elektrischen Feld in diesem Raumgebiet.
  • Wichtigstes Beispiel für ein homogenes elektrisches Feld ist das Feld im Zwischenraum zweier entgegengesetzt geladener Platten.

Zum Artikel Zu den Aufgaben

Potenzial

Grundwissen

  • Jedem Punkt \(\rm{P}\) eines elektrischen Feldes kann ein Potenzial \(\varphi_{\rm{P}_0} \left( \rm{P} \right)=\frac{{{E_{{\rm{pot}}{\rm{,}}{{\rm{P}}_0}}}\left( {\rm{P}} \right)}}{q}\) zugeordnet werden. Dieses Potenzial ist von der Größe und der Anordnung der felderzeugenden Ladung \(Q\) und der Wahl eines Bezugspunktes \(\rm{P}_0\) abhängig.
  • Im COULOMB-Feld wählt man den Bezugspunkt des Potenzials unendlich weit von der felderzeugenden Ladung entfernt. Dann hat das Potenzial im Abstand \(r\) von der felderzeugenden Ladung den Wert \( {\varphi \left( r \right)} = \frac{1}{{4 \cdot \pi \cdot {\varepsilon _0}}} \cdot Q \cdot \frac{1}{r}\).
  • Im homogenen elektrischen Feld (z.B. im Zwischenraum zweier entgegengesetzt geladener Platten) wählt man als Bezugspunkt des Potenzials die Oberfläche der negativ geladenen Platte. Dann hat das Potenzial im Abstand \(x\) von der negativ geladenen Platte den Wert \(\varphi \left( x \right) = E \cdot x\) bzw. \(\varphi \left( x \right) = \frac{1}{{{\varepsilon_0}}} \cdot \frac{{\left| Q \right|}}{A} \cdot x\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Jedem Punkt \(\rm{P}\) eines elektrischen Feldes kann ein Potenzial \(\varphi_{\rm{P}_0} \left( \rm{P} \right)=\frac{{{E_{{\rm{pot}}{\rm{,}}{{\rm{P}}_0}}}\left( {\rm{P}} \right)}}{q}\) zugeordnet werden. Dieses Potenzial ist von der Größe und der Anordnung der felderzeugenden Ladung \(Q\) und der Wahl eines Bezugspunktes \(\rm{P}_0\) abhängig.
  • Im COULOMB-Feld wählt man den Bezugspunkt des Potenzials unendlich weit von der felderzeugenden Ladung entfernt. Dann hat das Potenzial im Abstand \(r\) von der felderzeugenden Ladung den Wert \( {\varphi \left( r \right)} = \frac{1}{{4 \cdot \pi \cdot {\varepsilon _0}}} \cdot Q \cdot \frac{1}{r}\).
  • Im homogenen elektrischen Feld (z.B. im Zwischenraum zweier entgegengesetzt geladener Platten) wählt man als Bezugspunkt des Potenzials die Oberfläche der negativ geladenen Platte. Dann hat das Potenzial im Abstand \(x\) von der negativ geladenen Platte den Wert \(\varphi \left( x \right) = E \cdot x\) bzw. \(\varphi \left( x \right) = \frac{1}{{{\varepsilon_0}}} \cdot \frac{{\left| Q \right|}}{A} \cdot x\).

Zum Artikel Zu den Aufgaben

Übersicht über die Strömungslehre

Grundwissen

  • Die Strömungslehre beschäftigt sich mit der Bewegung von Flüssigkeiten und Gasen.
  • Dabei unterscheidet man die Bewegung von Flüssigkeiten (Hydrodynamik) und die von Gasen (Aerodynamik).
  • Die Strömungslehre hat vielfältige Anwendungsmöglichkeiten im Alltag.

Zum Artikel
Grundwissen

  • Die Strömungslehre beschäftigt sich mit der Bewegung von Flüssigkeiten und Gasen.
  • Dabei unterscheidet man die Bewegung von Flüssigkeiten (Hydrodynamik) und die von Gasen (Aerodynamik).
  • Die Strömungslehre hat vielfältige Anwendungsmöglichkeiten im Alltag.

Zum Artikel Zu den Aufgaben

Kapazität des Plattenkondensators

Grundwissen

  • Die Kapazität eines Plattenkondensators (Flächeninhalt der (gleichgroßen) Platten \(A\), Plattenabstand \(d\), Dielektrikum mit relativer Dielektrizitätskonstante \({\varepsilon _r}\)) berechnet sich durch \(C = {\varepsilon _0} \cdot {\varepsilon _r} \cdot \frac{A}{d}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Kapazität eines Plattenkondensators (Flächeninhalt der (gleichgroßen) Platten \(A\), Plattenabstand \(d\), Dielektrikum mit relativer Dielektrizitätskonstante \({\varepsilon _r}\)) berechnet sich durch \(C = {\varepsilon _0} \cdot {\varepsilon _r} \cdot \frac{A}{d}\).

Zum Artikel Zu den Aufgaben

Kondensator und Kapazität

Grundwissen

  • Ein Kondensator ist eine Anordnung von zwei Leitern, zwischen denen sich ein isolierendes Material, ein sogenanntes Dielektrikum befindet.
  • Legt man über die beiden Leiter eine Spannung an, dann befinden sich nach einiger Zeit auf den Leitern entgegengesetzte, betraglich gleich große Ladungen.
  • Der Ladungsbetrag \(Q\), der sich auf dem Kondensator befindet, ist proportional zur Spannung \(U\), die über dem Kondensator anliegt: \(Q=C \cdot U\). Den Proportionalitätsfaktor \(C\) bezeichnet man als Kapazität des Kondensators. 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Kondensator ist eine Anordnung von zwei Leitern, zwischen denen sich ein isolierendes Material, ein sogenanntes Dielektrikum befindet.
  • Legt man über die beiden Leiter eine Spannung an, dann befinden sich nach einiger Zeit auf den Leitern entgegengesetzte, betraglich gleich große Ladungen.
  • Der Ladungsbetrag \(Q\), der sich auf dem Kondensator befindet, ist proportional zur Spannung \(U\), die über dem Kondensator anliegt: \(Q=C \cdot U\). Den Proportionalitätsfaktor \(C\) bezeichnet man als Kapazität des Kondensators. 

Zum Artikel Zu den Aufgaben

2. Newtonsches Gesetz (Aktionsprinzip)

Grundwissen

  • Wirkt auf einen Körper eine resultierende Kraft \(\vec{F}\), so wird der Körper in die Richtung der Kraft beschleunigt.
  • Es gilt \(\vec{F}=m\cdot \vec{a}=m\cdot \frac{\Delta \vec{v}}{\Delta t}\)
  • Die Einheit der Kraft ist 1 Newton: \(\left[ F \right] = \left[ m \right] \cdot \left[ a \right] = 1\,{\rm{kg}} \cdot 1\,\frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{kg}} \cdot \frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{N}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wirkt auf einen Körper eine resultierende Kraft \(\vec{F}\), so wird der Körper in die Richtung der Kraft beschleunigt.
  • Es gilt \(\vec{F}=m\cdot \vec{a}=m\cdot \frac{\Delta \vec{v}}{\Delta t}\)
  • Die Einheit der Kraft ist 1 Newton: \(\left[ F \right] = \left[ m \right] \cdot \left[ a \right] = 1\,{\rm{kg}} \cdot 1\,\frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{kg}} \cdot \frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{N}}\)

Zum Artikel Zu den Aufgaben

Auswerten von Entladekurven

Grundwissen

  • Aus Messwerten von der Entladung eines Kondensators kannst du mit verschiedenen Methoden die konkreten Werte für die Parameter der Exponentialfunktion, die die gemessene Größe beschreibt, bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Aus Messwerten von der Entladung eines Kondensators kannst du mit verschiedenen Methoden die konkreten Werte für die Parameter der Exponentialfunktion, die die gemessene Größe beschreibt, bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel Zu den Aufgaben

Magnetfeld von geraden Leitern

Grundwissen

  • Wenn durch einen geraden und sehr langen Leiter ein elektrischer Strom fließt, dann haben die Feldlinien des magnetischen Feldes die Form von Kreisen, die in Ebenen senkrecht zu dem Leiter verlaufen und ihren Mittelpunkt im Leiter haben.
  • Die Orientierung des Feldes kann man mit der ersten Rechte-Faust-Regel bestimmen.
  • Ist \(I\) die Stärke des Stroms im Leiter und \(r\) der Abstand eines Punktes zum Leiter, dann berechnet sich der Betrag der magnetischen Flussdichte \(B\) an diesem Punkt durch \(B = {\mu _0} \cdot \frac{1}{{2 \, \pi \cdot r}} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn durch einen geraden und sehr langen Leiter ein elektrischer Strom fließt, dann haben die Feldlinien des magnetischen Feldes die Form von Kreisen, die in Ebenen senkrecht zu dem Leiter verlaufen und ihren Mittelpunkt im Leiter haben.
  • Die Orientierung des Feldes kann man mit der ersten Rechte-Faust-Regel bestimmen.
  • Ist \(I\) die Stärke des Stroms im Leiter und \(r\) der Abstand eines Punktes zum Leiter, dann berechnet sich der Betrag der magnetischen Flussdichte \(B\) an diesem Punkt durch \(B = {\mu _0} \cdot \frac{1}{{2 \, \pi \cdot r}} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).

Zum Artikel Zu den Aufgaben

Magnetfeld von langen Zylinderspulen

Grundwissen

  • Wenn durch eine lange Zylinderspule ein elektrischer Strom fließt, dann herrscht im Innenraum der Spule ein homogenes Magnetfeld. Die Feldlinien verlaufen dort parallel zur Zylinderachse.
  • Die Orientierung des magnetischen Feldes kann man mit der zweiten Rechte-Faust-Regel bestimmen.
  • Ist \(N\) die Anzahl der Windungen und \(l\) die Länge der Spule sowie \(I\) die Stärke des Stroms durch die Spule, dann berechnet sich der Betrag \(B\) der magnetischen Flussdichte im Innenraum der Spule durch \(B = {\mu _0} \cdot \frac{N}{l} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).
  • Befindet sich im Innenraum der langen Zylinderspule ein Kern aus einem ferromagnetischen Stoff mit der relativen Permeabilität \(\mu_{\rm{r}}\), dann berechnet sich der Betrag \(B\) der magnetischen Flussdichte im Innenraum der Spule durch \(B = \mu _0 \cdot \mu_{\rm{r}} \cdot \frac{N}{l} \cdot I\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn durch eine lange Zylinderspule ein elektrischer Strom fließt, dann herrscht im Innenraum der Spule ein homogenes Magnetfeld. Die Feldlinien verlaufen dort parallel zur Zylinderachse.
  • Die Orientierung des magnetischen Feldes kann man mit der zweiten Rechte-Faust-Regel bestimmen.
  • Ist \(N\) die Anzahl der Windungen und \(l\) die Länge der Spule sowie \(I\) die Stärke des Stroms durch die Spule, dann berechnet sich der Betrag \(B\) der magnetischen Flussdichte im Innenraum der Spule durch \(B = {\mu _0} \cdot \frac{N}{l} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).
  • Befindet sich im Innenraum der langen Zylinderspule ein Kern aus einem ferromagnetischen Stoff mit der relativen Permeabilität \(\mu_{\rm{r}}\), dann berechnet sich der Betrag \(B\) der magnetischen Flussdichte im Innenraum der Spule durch \(B = \mu _0 \cdot \mu_{\rm{r}} \cdot \frac{N}{l} \cdot I\).

Zum Artikel Zu den Aufgaben

Magnetfeld von HELMHOLTZ-Spulen

Grundwissen

  • Als HELMHOLTZ-Spule bezeichnet man eine Anordnung von zwei kurzen Spulen mit großem Radius \(R\) und gleicher Windungszahl, die im Abstand \(R\) auf derselben Achse parallel aufgestellt und gleichsinnig von Strom durchflossen werden. In der Mittelebene der beiden Spulen entsteht ein Bereich mit weitgehend homogenem magnetischem Feld.
  • Die Orientierung des magnetischen Feldes kann man mit der zweiten Rechte-Faust-Regel bestimmen.
  • Ist \(N\) die Anzahl der Windungen und \(R\) der Radius der Spulen sowie \(I\) die Stärke des Stroms durch die Spule, dann berechnet sich der Betrag \(B\) der magnetischen Flussdichte in der Mittelebene des Spulenpaars durch \(B = {\mu _0} \cdot \frac{{8 \cdot N}}{{{{\sqrt {125} }} \cdot R}} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als HELMHOLTZ-Spule bezeichnet man eine Anordnung von zwei kurzen Spulen mit großem Radius \(R\) und gleicher Windungszahl, die im Abstand \(R\) auf derselben Achse parallel aufgestellt und gleichsinnig von Strom durchflossen werden. In der Mittelebene der beiden Spulen entsteht ein Bereich mit weitgehend homogenem magnetischem Feld.
  • Die Orientierung des magnetischen Feldes kann man mit der zweiten Rechte-Faust-Regel bestimmen.
  • Ist \(N\) die Anzahl der Windungen und \(R\) der Radius der Spulen sowie \(I\) die Stärke des Stroms durch die Spule, dann berechnet sich der Betrag \(B\) der magnetischen Flussdichte in der Mittelebene des Spulenpaars durch \(B = {\mu _0} \cdot \frac{{8 \cdot N}}{{{{\sqrt {125} }} \cdot R}} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).

Zum Artikel Zu den Aufgaben

Kraft zwischen Strömen

Grundwissen

  • Elektrische Ströme üben aufeinander Kräfte aus; diese Kräfte bezeichnen wir als magnetische Kräfte.
  • Alle magnetischen Erscheinungen beruhen auf diesen magnetischen Kräften: Der Permanentmagnetismus beruht auf stromartigen Effekten in den Atomen, der Erdmagnetismus beruht auf dem Strom von elektrisch leitender Flüssigkeit im äußeren Erdkern.

Zum Artikel
Grundwissen

  • Elektrische Ströme üben aufeinander Kräfte aus; diese Kräfte bezeichnen wir als magnetische Kräfte.
  • Alle magnetischen Erscheinungen beruhen auf diesen magnetischen Kräften: Der Permanentmagnetismus beruht auf stromartigen Effekten in den Atomen, der Erdmagnetismus beruht auf dem Strom von elektrisch leitender Flüssigkeit im äußeren Erdkern.

Zum Artikel Zu den Aufgaben

Bestimmung der magnetischen Kraft

Grundwissen

  • Herrscht an einem Punkt ein magnetisches Feld mit bekannter Richtung, Orientierung und bekanntem Betrag \(B\) der magnetischen Flussdichte und befindet sich an diesem Punkt ein Leiterstück der Länge \(l\), durch das ein Strom der Stärke \(I\) fließt, dann kannst du die Richtung, die Orientierung und den Betrag der magnetischen Kraft \(\vec F_{\rm{mag}}\) auf dieses Leiterstück bestimmen.
  • Die Richtung und die Orientierung der magnetischen Kraft \(\vec F_{\rm{mag}}\) auf das Leiterstück bestimmst du mit Hilfe der Drei-Finger-Regel der rechten Hand (Daumen in elektrische Stromrichtung, Zeigefinger in Magnetfeldrichtung → Mittelfinger in Kraftrichtung).
  • Den Betrag \(F_{\rm{mag}}\) der magnetischen Kraft auf das Leiterstück berechnest du mit der Formel \({F_{{\rm{mag}}}} = I \cdot l \cdot  B \cdot \sin \left( \varphi \right)\), wobei \(\varphi\) die Weite des Winkels zwischen \(\vec B\) und \(\vec I\) ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Herrscht an einem Punkt ein magnetisches Feld mit bekannter Richtung, Orientierung und bekanntem Betrag \(B\) der magnetischen Flussdichte und befindet sich an diesem Punkt ein Leiterstück der Länge \(l\), durch das ein Strom der Stärke \(I\) fließt, dann kannst du die Richtung, die Orientierung und den Betrag der magnetischen Kraft \(\vec F_{\rm{mag}}\) auf dieses Leiterstück bestimmen.
  • Die Richtung und die Orientierung der magnetischen Kraft \(\vec F_{\rm{mag}}\) auf das Leiterstück bestimmst du mit Hilfe der Drei-Finger-Regel der rechten Hand (Daumen in elektrische Stromrichtung, Zeigefinger in Magnetfeldrichtung → Mittelfinger in Kraftrichtung).
  • Den Betrag \(F_{\rm{mag}}\) der magnetischen Kraft auf das Leiterstück berechnest du mit der Formel \({F_{{\rm{mag}}}} = I \cdot l \cdot  B \cdot \sin \left( \varphi \right)\), wobei \(\varphi\) die Weite des Winkels zwischen \(\vec B\) und \(\vec I\) ist.

Zum Artikel Zu den Aufgaben

Bestimmung der LORENTZ-Kraft

Grundwissen

  • Herrscht an einem Punkt ein magnetisches Feld \(\vec B\) mit bekannter Richtung, Orientierung und Flussdichte \(B\), und bewegt sich an diesem Punkt ein Teilchen mit der Ladung \(q\) und der Geschwindigkeit \(\vec v\), dann kannst du die Richtung, die Orientierung und den Betrag der LORENTZ-Kraft \(\vec F_{\rm{L}}\) auf dieses Teilchen bestimmen.
  • Die Richtung und die Orientierung der LORENTZ-Kraft \(\vec F_{\rm{L}}\) auf das Teilchen bestimmst du mit Hilfe der Drei-Finger-Regel der rechten Hand (Daumen in Bewegungsrichtung eines positiv geladenen Teilchens, Zeigefinger in Magnetfeldrichtung → Mittelfinger in Kraftrichtung).
  • Den Betrag \(F_{\rm{L}}\) der LORENTZ-Kraft auf das Teilchen berechnest du mit der Formel \({F_{{\rm{L}}}} = q \cdot v \cdot  B \cdot \sin \left( \varphi \right)\), wobei \(\varphi\) die Weite des Winkels zwischen \(\vec B\) und \(\vec v\) ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Herrscht an einem Punkt ein magnetisches Feld \(\vec B\) mit bekannter Richtung, Orientierung und Flussdichte \(B\), und bewegt sich an diesem Punkt ein Teilchen mit der Ladung \(q\) und der Geschwindigkeit \(\vec v\), dann kannst du die Richtung, die Orientierung und den Betrag der LORENTZ-Kraft \(\vec F_{\rm{L}}\) auf dieses Teilchen bestimmen.
  • Die Richtung und die Orientierung der LORENTZ-Kraft \(\vec F_{\rm{L}}\) auf das Teilchen bestimmst du mit Hilfe der Drei-Finger-Regel der rechten Hand (Daumen in Bewegungsrichtung eines positiv geladenen Teilchens, Zeigefinger in Magnetfeldrichtung → Mittelfinger in Kraftrichtung).
  • Den Betrag \(F_{\rm{L}}\) der LORENTZ-Kraft auf das Teilchen berechnest du mit der Formel \({F_{{\rm{L}}}} = q \cdot v \cdot  B \cdot \sin \left( \varphi \right)\), wobei \(\varphi\) die Weite des Winkels zwischen \(\vec B\) und \(\vec v\) ist.

Zum Artikel Zu den Aufgaben