Direkt zum Inhalt
Suchergebnisse 841 - 870 von 888

Lernaufgabe: Kraftwerk Mensch

Weblink

Diese Lernaufgabe der iMINT-Akademie Berlin zum übergreifenden Thema „Verbraucherbildung“ beschäftigt sich mit dem Energiehaushalt des menschlichen Körpers und soll dazu beitragen, dass die Schülerinnen und Schüler die Funktionsweise ihres Körpers besser kennenlernen und den verantwortungsvollen Umgang mit Nahrung erlernen.
Zur Erarbeitung des Themas stehen verschiedene Material- und Hilfekarten zur Verfügung. Als Lernprodukt entsteht ein Lernplakat. Dieser Link führt zum editierbaren Word-Dokument.

Zum externen Weblink
Weblink

Diese Lernaufgabe der iMINT-Akademie Berlin zum übergreifenden Thema „Verbraucherbildung“ beschäftigt sich mit dem Energiehaushalt des menschlichen Körpers und soll dazu beitragen, dass die Schülerinnen und Schüler die Funktionsweise ihres Körpers besser kennenlernen und den verantwortungsvollen Umgang mit Nahrung erlernen.
Zur Erarbeitung des Themas stehen verschiedene Material- und Hilfekarten zur Verfügung. Als Lernprodukt entsteht ein Lernplakat. Dieser Link führt zum editierbaren Word-Dokument.

Zum externen Weblink

Lernaufgabe: Kraftwerk Mensch

Weblink

Diese Lernaufgabe der iMINT-Akademie Berlin zum übergreifenden Thema „Verbraucherbildung“ beschäftigt sich mit dem Energiehaushalt des menschlichen Körpers und soll dazu beitragen, dass die Schülerinnen und Schüler die Funktionsweise ihres Körpers besser kennenlernen und den verantwortungsvollen Umgang mit Nahrung erlernen.
Zur Erarbeitung des Themas stehen verschiedene Material- und Hilfekarten zur Verfügung. Als Lernprodukt entsteht ein Lernplakat.

Zum externen Weblink
Weblink

Diese Lernaufgabe der iMINT-Akademie Berlin zum übergreifenden Thema „Verbraucherbildung“ beschäftigt sich mit dem Energiehaushalt des menschlichen Körpers und soll dazu beitragen, dass die Schülerinnen und Schüler die Funktionsweise ihres Körpers besser kennenlernen und den verantwortungsvollen Umgang mit Nahrung erlernen.
Zur Erarbeitung des Themas stehen verschiedene Material- und Hilfekarten zur Verfügung. Als Lernprodukt entsteht ein Lernplakat.

Zum externen Weblink

Übersicht über die Strömungslehre

Grundwissen

  • Die Strömungslehre beschäftigt sich mit der Bewegung von Flüssigkeiten und Gasen.
  • Dabei unterscheidet man die Bewegung von Flüssigkeiten (Hydrodynamik) und die von Gasen (Aerodynamik).
  • Die Strömungslehre hat vielfältige Anwendungsmöglichkeiten im Alltag.

Zum Artikel
Grundwissen

  • Die Strömungslehre beschäftigt sich mit der Bewegung von Flüssigkeiten und Gasen.
  • Dabei unterscheidet man die Bewegung von Flüssigkeiten (Hydrodynamik) und die von Gasen (Aerodynamik).
  • Die Strömungslehre hat vielfältige Anwendungsmöglichkeiten im Alltag.

Zum Artikel Zu den Aufgaben

2. Newtonsches Gesetz (Aktionsprinzip)

Grundwissen

  • Wirkt auf einen Körper eine resultierende Kraft \(\vec{F}\), so wird der Körper in die Richtung der Kraft beschleunigt.
  • Es gilt \(\vec{F}=m\cdot \vec{a}=m\cdot \frac{\Delta \vec{v}}{\Delta t}\)
  • Die Einheit der Kraft ist 1 Newton: \(\left[ F \right] = \left[ m \right] \cdot \left[ a \right] = 1\,{\rm{kg}} \cdot 1\,\frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{kg}} \cdot \frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{N}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wirkt auf einen Körper eine resultierende Kraft \(\vec{F}\), so wird der Körper in die Richtung der Kraft beschleunigt.
  • Es gilt \(\vec{F}=m\cdot \vec{a}=m\cdot \frac{\Delta \vec{v}}{\Delta t}\)
  • Die Einheit der Kraft ist 1 Newton: \(\left[ F \right] = \left[ m \right] \cdot \left[ a \right] = 1\,{\rm{kg}} \cdot 1\,\frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{kg}} \cdot \frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{N}}\)

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung von Strömungen

Grundwissen

  • Zentrale Größen zur Beschreibung von Strömungen sind die Geschwindigkeit\(v\), der Druck \(p\), die Dichte \(\rho\), die Temperatur \(T\) und die dynamische Viskosität \(\eta\).

Zum Artikel
Grundwissen

  • Zentrale Größen zur Beschreibung von Strömungen sind die Geschwindigkeit\(v\), der Druck \(p\), die Dichte \(\rho\), die Temperatur \(T\) und die dynamische Viskosität \(\eta\).

Zum Artikel Zu den Aufgaben

Kontinuitätsgleichungen

Grundwissen

  • Die Größe \(\frac{m}{t}=\rho\cdot v\cdot A\) bzw. infinitesimal \(\frac{dm}{dt}=\dot{m}\) bezeichnet man als Massenstrom.
  • Bei einer stationären Strömung ist wegen der Massenerhaltung der Massenstrom \(\dot{m}=\frac{m}{t}=\rho \cdot A \cdot v\) an allen Querschnittsflächen konstant.
  • Bei inkompressiblen Fluiden ist der Massenstrom \(\dot{m}\) proportional zum Volumenstrom \(\dot{V}\). Der Proportionalitätsfaktor ist die Dichte \(\rho\) des inkompressiblen Fluids.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Größe \(\frac{m}{t}=\rho\cdot v\cdot A\) bzw. infinitesimal \(\frac{dm}{dt}=\dot{m}\) bezeichnet man als Massenstrom.
  • Bei einer stationären Strömung ist wegen der Massenerhaltung der Massenstrom \(\dot{m}=\frac{m}{t}=\rho \cdot A \cdot v\) an allen Querschnittsflächen konstant.
  • Bei inkompressiblen Fluiden ist der Massenstrom \(\dot{m}\) proportional zum Volumenstrom \(\dot{V}\). Der Proportionalitätsfaktor ist die Dichte \(\rho\) des inkompressiblen Fluids.

Zum Artikel Zu den Aufgaben

BERNOULLI-Gleichung

Grundwissen

  • Die BERNOULLI-Gleichung liefert einen Zusammenhang zwischen Strömungsgeschwindigkeit \(v\) und Druck \(p\).
  • Die BERNOULLI-Gleichung bei stationärer, verlustfreier Strömung eines inkompressiblen Fluides ist \(\rho \cdot g \cdot h+\frac{1}{2} \cdot \rho \cdot v^2 + p=\rm{konst.}\).
  • Die Summe der potentiellen Energie, der kinetischen Energie und der Druckenergie (also der verrichteten Arbeit) entlang der Stromröhre ist erhalten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die BERNOULLI-Gleichung liefert einen Zusammenhang zwischen Strömungsgeschwindigkeit \(v\) und Druck \(p\).
  • Die BERNOULLI-Gleichung bei stationärer, verlustfreier Strömung eines inkompressiblen Fluides ist \(\rho \cdot g \cdot h+\frac{1}{2} \cdot \rho \cdot v^2 + p=\rm{konst.}\).
  • Die Summe der potentiellen Energie, der kinetischen Energie und der Druckenergie (also der verrichteten Arbeit) entlang der Stromröhre ist erhalten.

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung einer Kreisbewegung

Grundwissen

  • Das (Dreh-)Zentrum \(Z\) ist der Mittelpunkt der Kreisbahn.
  • Der Bahnradius \(r\) ist die (konstant bleibende) Entfernung des Körpers zum Drehzentrum.
  • Die Umlaufdauer \(T\) gibt an, wie lange ein Körper für einen vollständigen Umlauf der Kreisbahn benötigt.
  • Die Frequenz \(f\) ist der Kehrwert der Umlaufdauer: \(f=\frac{1}{T}\). Sie gibt an, wie viele Umläufe ein Körper pro Zeiteinheit absolviert.
  • Mit \(s\) bezeichnen wir die Länge der (Bahn-)Strecke, die der Körper seit dem Start der Kreisbewegung auf der Kreisbahn zurückgelegt hat.
  • Mit \(\varphi\) bezeichnen wir die Weite des Drehwinkels, den der Bahnradius seit dem Start der Kreisbewegung überstrichen hat.
  • Winkel werden bei der Beschreibung von Kreisbewegungen meist im Bogenmaß angegeben. Eine volle Umdrehung von \(360^\circ\) entspricht im Bogenmaß dem Wert \(2\pi\)
  • Es gilt \(s = \varphi  \cdot r \quad {\rm{bzw.}} \quad \varphi  = \frac{s}{r}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das (Dreh-)Zentrum \(Z\) ist der Mittelpunkt der Kreisbahn.
  • Der Bahnradius \(r\) ist die (konstant bleibende) Entfernung des Körpers zum Drehzentrum.
  • Die Umlaufdauer \(T\) gibt an, wie lange ein Körper für einen vollständigen Umlauf der Kreisbahn benötigt.
  • Die Frequenz \(f\) ist der Kehrwert der Umlaufdauer: \(f=\frac{1}{T}\). Sie gibt an, wie viele Umläufe ein Körper pro Zeiteinheit absolviert.
  • Mit \(s\) bezeichnen wir die Länge der (Bahn-)Strecke, die der Körper seit dem Start der Kreisbewegung auf der Kreisbahn zurückgelegt hat.
  • Mit \(\varphi\) bezeichnen wir die Weite des Drehwinkels, den der Bahnradius seit dem Start der Kreisbewegung überstrichen hat.
  • Winkel werden bei der Beschreibung von Kreisbewegungen meist im Bogenmaß angegeben. Eine volle Umdrehung von \(360^\circ\) entspricht im Bogenmaß dem Wert \(2\pi\)
  • Es gilt \(s = \varphi  \cdot r \quad {\rm{bzw.}} \quad \varphi  = \frac{s}{r}\)

Zum Artikel Zu den Aufgaben

Modell einer Loopingbahn (Simulation)

Download ( Simulation )

Diese Simulation zeigt einen einfachen Modellversuch zur Looping-Achterbahn. Um allzu komplizierte Berechnungen zu vermeiden, wird eine Kreisform…

Zum Download
Download ( Simulation )

Diese Simulation zeigt einen einfachen Modellversuch zur Looping-Achterbahn. Um allzu komplizierte Berechnungen zu vermeiden, wird eine Kreisform…

Zum Download

Milchbar (CK-12-Simulation)

Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org Lizenz:…

Zum Download
Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org Lizenz:…

Zum Download

Sinken, Schweben, Steigen, Schwimmen

Grundwissen

  • Das Zusammenspiel von Gewichtskraft \(\vec F_{\rm{G}}\) eines Körpers und seiner Auftriebskraft \(\vec F_{\rm{A}}\) im Medium bestimmen, ob der Körper sinkt, schwebt, steigt oder schwimmt.
  • Beim Schwimmen taucht ein Körpers gerade so weit in ein Medium ein, sodass gilt \({F_{\rm{A}}} = {F_{\rm{G}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Zusammenspiel von Gewichtskraft \(\vec F_{\rm{G}}\) eines Körpers und seiner Auftriebskraft \(\vec F_{\rm{A}}\) im Medium bestimmen, ob der Körper sinkt, schwebt, steigt oder schwimmt.
  • Beim Schwimmen taucht ein Körpers gerade so weit in ein Medium ein, sodass gilt \({F_{\rm{A}}} = {F_{\rm{G}}}\).

Zum Artikel Zu den Aufgaben

Wie kamen die Astronauten von Apollo 11 zum Mond?

Weblink

Interessante Beschreibung des Mondflugs der Saturn V-Rakete.
Themen:
Impuls, Raketengleichung und Drehgeschwindigkeit.

Zum externen Weblink
Weblink

Interessante Beschreibung des Mondflugs der Saturn V-Rakete.
Themen:
Impuls, Raketengleichung und Drehgeschwindigkeit.

Zum externen Weblink

Kurze Einführung in die Geschichte des Maßes

Weblink

Prof. André Bresges, Professor für Physik an der Universität Köln, gibt einen kurzen Einblick in die Geschichte des Maßes in der katholischen Kirche und leitet einen kleinen Selbstversuch zum Thema Messen in der Physik an.

Zur Übersicht Zum externen Weblink
Weblink

Prof. André Bresges, Professor für Physik an der Universität Köln, gibt einen kurzen Einblick in die Geschichte des Maßes in der katholischen Kirche und leitet einen kleinen Selbstversuch zum Thema Messen in der Physik an.

Zur Übersicht Zum externen Weblink

Anstiege in der Kinematik (Sek I) (Interaktives Tafelbild)

Download ( Tafelbilder )

In diesem Tafelbild bekommt der mathematische Begriff des Anstiegs für die Schüler eine physikalische Bedeutung. Im Rahmen der gleichförmigen und…

Zum Download
Download ( Tafelbilder )

In diesem Tafelbild bekommt der mathematische Begriff des Anstiegs für die Schüler eine physikalische Bedeutung. Im Rahmen der gleichförmigen und…

Zum Download

Anstiege in der Kinematik (Sek II) (Interaktives Tafelbild)

Download ( Tafelbilder )

Über das physikalische Problem, die Geschwindigkeit im s(t)-Diagramm abzulesen, soll in diesem Tafelbild die Verknüpfung zur mathematischen Ableitung…

Zum Download
Download ( Tafelbilder )

Über das physikalische Problem, die Geschwindigkeit im s(t)-Diagramm abzulesen, soll in diesem Tafelbild die Verknüpfung zur mathematischen Ableitung…

Zum Download

Flächeninhalte in der Kinematik (Sek I) (Interaktives Tafelbild)

Download ( Tafelbilder )

In diesem Tafelbild wird die Bedeutung des Flächeninhaltes in der Kinematik behandelt. Die Schüler sollen in dieser Stunde den Weg im…

Zum Download
Download ( Tafelbilder )

In diesem Tafelbild wird die Bedeutung des Flächeninhaltes in der Kinematik behandelt. Die Schüler sollen in dieser Stunde den Weg im…

Zum Download

Flächeninhalte in der Physik (Sek II) (Interaktives Tafelbild)

Download ( Tafelbilder )

Die Bedeutung von Flächeninhalten in der Physik soll den Schülern mit diesem Tafelbild verdeutlicht werden. Zu Beginn wird den Schülern der…

Zum Download
Download ( Tafelbilder )

Die Bedeutung von Flächeninhalten in der Physik soll den Schülern mit diesem Tafelbild verdeutlicht werden. Zu Beginn wird den Schülern der…

Zum Download

Gültige Ziffern mit Zehnerpotenzen

Grundwissen

  • Manchmal ist die Angabe der Lösung mit der richtigen Anzahl der gültigen Ziffern nicht direkt möglich.
  • Die Umwandlung in eine größere Einheit ist eine Lösungsmöglichkeit.
  • Durch den Einsatz von Zehnerpotenzen kannst du die Anzahl der gültigen Ziffern immer richtig angeben.

Zum Artikel
Grundwissen

  • Manchmal ist die Angabe der Lösung mit der richtigen Anzahl der gültigen Ziffern nicht direkt möglich.
  • Die Umwandlung in eine größere Einheit ist eine Lösungsmöglichkeit.
  • Durch den Einsatz von Zehnerpotenzen kannst du die Anzahl der gültigen Ziffern immer richtig angeben.

Zum Artikel Zu den Aufgaben

Exponentialfunktionen auswerten

Grundwissen

  • Exponentialfunktionen haben die Form \(f(x)=a\cdot b^x\) bzw. mittels \(e\)-Funktion ausgedrückt \(f(x) = a \cdot e^{k \cdot x}\)
  • Aus Messwerten kannst du die zugrundeliegende Exponentialfunktion mittels exponentieller Regression ermitteln.
  • Bei Zerfallskurven, bei Absorptionskurven und bei Entladekurven von Kondensatoren handelt es sich um Exponentialfunktionen.

Zum Artikel
Grundwissen

  • Exponentialfunktionen haben die Form \(f(x)=a\cdot b^x\) bzw. mittels \(e\)-Funktion ausgedrückt \(f(x) = a \cdot e^{k \cdot x}\)
  • Aus Messwerten kannst du die zugrundeliegende Exponentialfunktion mittels exponentieller Regression ermitteln.
  • Bei Zerfallskurven, bei Absorptionskurven und bei Entladekurven von Kondensatoren handelt es sich um Exponentialfunktionen.

Zum Artikel Zu den Aufgaben

Erstellen von Diagrammen (Animation)

Download ( Animationen )

Die Animation zeigt das Erstellen eines Diagramms zur Veranschaulichung von Messwerten.

Zum Download
Download ( Animationen )

Die Animation zeigt das Erstellen eines Diagramms zur Veranschaulichung von Messwerten.

Zum Download

Lösen von Gleichungen - Einführung - Produktgleichung Kurzform (Animation)

Download ( Animationen )

Die Animation zeigt ein "Lösungsdreieck" als Hilfsmittel zum Auflösen einer einfachen Produktgleichung der Form \(a=b \cdot c\) nach den…

Zum Download
Download ( Animationen )

Die Animation zeigt ein "Lösungsdreieck" als Hilfsmittel zum Auflösen einer einfachen Produktgleichung der Form \(a=b \cdot c\) nach den…

Zum Download

Grundgrößen und abgeleitete Größen - Gleichheit von Streckenlängen (Animation)

Download ( Animationen )

Die Animation zeigt das Verfahren zur Überprüfung der Gleichheit zweier Streckenlängen.

Zum Download
Download ( Animationen )

Die Animation zeigt das Verfahren zur Überprüfung der Gleichheit zweier Streckenlängen.

Zum Download

Grundgrößen und abgeleitete Größen - Vielfachheit von Streckenlängen (Animation)

Download ( Animationen )

Die Animation zeigt das Verfahren zur Bestimmung des Vielfachen einer Streckenlänge.

Zum Download
Download ( Animationen )

Die Animation zeigt das Verfahren zur Bestimmung des Vielfachen einer Streckenlänge.

Zum Download

Grundgrößen und abgeleitete Größen - Gleichheit von Stromstärken (Animation)

Download ( Animationen )

Die Animation zeigt das Verfahren zur Überprüfung der Gleichheit zweier Stromstärken.

Zum Download
Download ( Animationen )

Die Animation zeigt das Verfahren zur Überprüfung der Gleichheit zweier Stromstärken.

Zum Download

Lösen von Gleichungen - Einführung - Produktgleichung (Animation)

Download ( Animationen )

Die Animation zeigt das schrittweise Auflösen einer Produktgleichung der Form \(a=b \cdot c\) nach den drei in der Gleichung auftretenden Größen.

Zum Download
Download ( Animationen )

Die Animation zeigt das schrittweise Auflösen einer Produktgleichung der Form \(a=b \cdot c\) nach den drei in der Gleichung auftretenden Größen.

Zum Download

Lösen von Gleichungen - Einführung - Quotientengleichung (Animation)

Download ( Animationen )

Die Animation zeigt das schrittweise Auflösen einer Quotientengleichung der Form \(a=\frac{b}{c}\) nach den drei in der Gleichung auftretenden Größen.

Zum Download
Download ( Animationen )

Die Animation zeigt das schrittweise Auflösen einer Quotientengleichung der Form \(a=\frac{b}{c}\) nach den drei in der Gleichung auftretenden Größen.

Zum Download

Lösen von Gleichungen - Fortführung - Quotientengleichung (Animation)

Download ( Animationen )

Die Animation zeigt das schrittweise Auflösen einer Quotientengleichung der Form \(\frac{a}{b}=\frac{c}{d}\) nach den vier in der Gleichung…

Zum Download
Download ( Animationen )

Die Animation zeigt das schrittweise Auflösen einer Quotientengleichung der Form \(\frac{a}{b}=\frac{c}{d}\) nach den vier in der Gleichung…

Zum Download

Lösen von Gleichungen - Fortführung - Produktgleichung (Animation)

Download ( Animationen )

Die Animation zeigt das schrittweise Auflösen einer Produktgleichung der Form \(a \cdot b=c \cdot d\) nach den vier in der Gleichung auftretenden…

Zum Download
Download ( Animationen )

Die Animation zeigt das schrittweise Auflösen einer Produktgleichung der Form \(a \cdot b=c \cdot d\) nach den vier in der Gleichung auftretenden…

Zum Download

Lösen von Gleichungen - Fortführung - Stammbruchgleichung (Animation)

Download ( Animationen )

Die Animation zeigt das schrittweise Auflösen einer Stammbruchgleichung der Form \(\frac{1}{{{a}}} = \frac{1}{{{b}}} + \frac{1}{{{c}}}\) nach den drei…

Zum Download
Download ( Animationen )

Die Animation zeigt das schrittweise Auflösen einer Stammbruchgleichung der Form \(\frac{1}{{{a}}} = \frac{1}{{{b}}} + \frac{1}{{{c}}}\) nach den drei…

Zum Download

Methode der kleinen Schritte - Näherungsweise konstante Beschleunigung (Animation)

Download ( Animationen )

Die Animation zeigt, dass auch bei einer ungleichmäßig beschleunigten Bewegung die Beschleunigung in kleinen Zeitintervallen näherunsweise konstant…

Zum Download
Download ( Animationen )

Die Animation zeigt, dass auch bei einer ungleichmäßig beschleunigten Bewegung die Beschleunigung in kleinen Zeitintervallen näherunsweise konstant…

Zum Download