Direkt zum Inhalt
Suchergebnisse 1 - 30 von 111

Zerfallsgesetz, Zerfallskonstante und Halbwertszeit

Grundwissen

  • Für den Bestand \(N\) der zum Zeitpunkt \(t\) noch nicht zerfallenden Atomkerne gilt \(N(t) = {N_0} \cdot {e^{ - \lambda  \cdot t}}\) mit der Zerfallskonstanten \(\lambda\).
  • Für die Aktivität \(A\) zum Zeitpunkt \(t\) gilt \(A(t) = {A_0} \cdot {e^{ - \lambda  \cdot t}} = \lambda  \cdot {N_0} \cdot {e^{ - \lambda  \cdot t}}\).
  • Die Halbwertszeit \(T_{1/2}\) ist die Zeitspanne, in der sich die Anzahl der nicht zerfallenen Atomkerne eines radioaktiven Präparats halbiert.
  • Zwischen der Zerfallskonstanten \(\lambda\) und der Halbwertszeit \({T_{1/2}}\) besteht der Zusammenhang \(\lambda  = \frac{{\ln \left( 2 \right)}}{{{T_{1/2}}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für den Bestand \(N\) der zum Zeitpunkt \(t\) noch nicht zerfallenden Atomkerne gilt \(N(t) = {N_0} \cdot {e^{ - \lambda  \cdot t}}\) mit der Zerfallskonstanten \(\lambda\).
  • Für die Aktivität \(A\) zum Zeitpunkt \(t\) gilt \(A(t) = {A_0} \cdot {e^{ - \lambda  \cdot t}} = \lambda  \cdot {N_0} \cdot {e^{ - \lambda  \cdot t}}\).
  • Die Halbwertszeit \(T_{1/2}\) ist die Zeitspanne, in der sich die Anzahl der nicht zerfallenen Atomkerne eines radioaktiven Präparats halbiert.
  • Zwischen der Zerfallskonstanten \(\lambda\) und der Halbwertszeit \({T_{1/2}}\) besteht der Zusammenhang \(\lambda  = \frac{{\ln \left( 2 \right)}}{{{T_{1/2}}}}\).

Zum Artikel Zu den Aufgaben

Auswerten von Zerfallskurven

Grundwissen

  • Aus Messwerten vom Zerfall eines radioaktiven Präparates kannst du mit verschiedenen Methoden z.B. die Anfangsaktivität \(A_0\), die Zerfallskonstante \(\lambda\) und die Halbwertszeit \(T_{1/2}\) bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Aus Messwerten vom Zerfall eines radioaktiven Präparates kannst du mit verschiedenen Methoden z.B. die Anfangsaktivität \(A_0\), die Zerfallskonstante \(\lambda\) und die Halbwertszeit \(T_{1/2}\) bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel Zu den Aufgaben

Auswerten von Absorptionskurven

Grundwissen

  • Aus Messwerten z.B. der Zählrate \(R\) ionisierender Strahlung hinter Absorbern kannst du mit verschiedenen Methoden z.B. die Zählrate \(R_0\) ohne Absorber, den Absorptionskoeffizienten \(\mu\) und die Halbwertsschichtdicke \(d_{1/2}\) bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel
Grundwissen

  • Aus Messwerten z.B. der Zählrate \(R\) ionisierender Strahlung hinter Absorbern kannst du mit verschiedenen Methoden z.B. die Zählrate \(R_0\) ohne Absorber, den Absorptionskoeffizienten \(\mu\) und die Halbwertsschichtdicke \(d_{1/2}\) bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel Zu den Aufgaben

Potentialtopfmodell (Fermi-Gas-Modell)

Grundwissen

  • Der Neutronentopf hat am Rand einen horizontalen Potentialverlauf mit Potential Null und einen scharf begrenzten Rand mit Einsetzen der Kernkraft.
  • Beim Protonentopf muss das Coulombpotential berücksichtigt werden, sodass das Potential am Rand positiv und nach außen mit \(\frac{1}{r}\) abfällt.
  • Der Boden des Neutronentopfes liegt energetisch bei ca. \(-46\,\rm{MeV}\), derjenige des Protonentopfes liegt etwas höher, da sich die Protonen im Kern gegenseitig abstoßen.

Zum Artikel
Grundwissen

  • Der Neutronentopf hat am Rand einen horizontalen Potentialverlauf mit Potential Null und einen scharf begrenzten Rand mit Einsetzen der Kernkraft.
  • Beim Protonentopf muss das Coulombpotential berücksichtigt werden, sodass das Potential am Rand positiv und nach außen mit \(\frac{1}{r}\) abfällt.
  • Der Boden des Neutronentopfes liegt energetisch bei ca. \(-46\,\rm{MeV}\), derjenige des Protonentopfes liegt etwas höher, da sich die Protonen im Kern gegenseitig abstoßen.

Zum Artikel Zu den Aufgaben

Fusionswahrscheinlichkeit

Grundwissen

  • Protonen müssen genug Energie besitzen, um die Coulombkräfte zu überwinden, um fusionieren zu können.
  • Trotz der hohen Temperatur in der Sonne besitzen auch hier nicht genug Protonen genug Energie.
  • Der Tunneleffekt im quantenmechanischen Modell erklärt, warum dennoch ausreichend Kernfusionen stattfinden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Protonen müssen genug Energie besitzen, um die Coulombkräfte zu überwinden, um fusionieren zu können.
  • Trotz der hohen Temperatur in der Sonne besitzen auch hier nicht genug Protonen genug Energie.
  • Der Tunneleffekt im quantenmechanischen Modell erklärt, warum dennoch ausreichend Kernfusionen stattfinden.

Zum Artikel Zu den Aufgaben

Ionisierende Strahlung in Chemie und Biologie

Grundwissen

  • Ionisierende Strahlung wird zur Schädlingssterilisation und zur Reduzierung der Keimfähigkeit genutzt.
  • Radioaktive Substanzen werden zum Tracing eingesetzt und geben Aufschluss über den Ablauf chemischer und biologischer Prozesse.
  • Ionisierende Strahlung kann die Farbe von Edelsteinen beeinflussen.

Zum Artikel
Grundwissen

  • Ionisierende Strahlung wird zur Schädlingssterilisation und zur Reduzierung der Keimfähigkeit genutzt.
  • Radioaktive Substanzen werden zum Tracing eingesetzt und geben Aufschluss über den Ablauf chemischer und biologischer Prozesse.
  • Ionisierende Strahlung kann die Farbe von Edelsteinen beeinflussen.

Zum Artikel Zu den Aufgaben

Ionisierende Strahlung in der Medizin

Grundwissen

  • Auch in der Medizin werden radioaktive Isotope als Tracer eingesetzt (Szintigraphie).
  • Besonders wichtig ist hier die Positronen-Emissions-Tomographie (PET).
  • Radionuklidtherapie kann auch zur Schmerzlinderung eingesetzt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auch in der Medizin werden radioaktive Isotope als Tracer eingesetzt (Szintigraphie).
  • Besonders wichtig ist hier die Positronen-Emissions-Tomographie (PET).
  • Radionuklidtherapie kann auch zur Schmerzlinderung eingesetzt werden.

Zum Artikel Zu den Aufgaben

Ionisierende Strahlung in der Technik

Grundwissen

  • Mit ionisierender Strahlung können Dicken gemessen, Werkstoffe geprüft und Lecks detektiert werden.
  • Radionuklidbatterien betreiben Herzschrittmacher und werden in der Raumfahrt genutzt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Mit ionisierender Strahlung können Dicken gemessen, Werkstoffe geprüft und Lecks detektiert werden.
  • Radionuklidbatterien betreiben Herzschrittmacher und werden in der Raumfahrt genutzt.

Zum Artikel Zu den Aufgaben

Streuexperiment

Grundwissen

  • Mit Streuexperimenten kann man den Aufbau und die Struktur von kleinsten Teilchen untersuchen.
  • Das zu untersuchende Objekt wir mit schnellen Teilchen beschossen, die am Objekt gestreut werden.
  • Aus der räumlichen Verteilung der gestreuten Teilchen werden Rückschlüsse auf die Struktur des Objektes gezogen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Mit Streuexperimenten kann man den Aufbau und die Struktur von kleinsten Teilchen untersuchen.
  • Das zu untersuchende Objekt wir mit schnellen Teilchen beschossen, die am Objekt gestreut werden.
  • Aus der räumlichen Verteilung der gestreuten Teilchen werden Rückschlüsse auf die Struktur des Objektes gezogen.

Zum Artikel Zu den Aufgaben

Kernkraft

Grundwissen

  • Die Kernkraft sorgt bei kleinen Nukleonenabständen von etwa \(0{,}5\,\rm{fm}\) bis  \(2{,}5\,\rm{fm}\), für eine Anziehung der Nukleonen und hält somit den Atomkern zusammen.
  • Die Kernkraft ist wesentlich stärker als die Gravitationswechselwirkung oder die elektromagnetische Wechselwirkung.
  • Für den Radius eines Atomkerns gilt näherungsweise \({{r_k} = 1{,}4 \cdot {10^{ - 15}}\,\rm{m} \cdot \sqrt[3]{A}}\), wo \(A\) die Nukleonenanzahl ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Kernkraft sorgt bei kleinen Nukleonenabständen von etwa \(0{,}5\,\rm{fm}\) bis  \(2{,}5\,\rm{fm}\), für eine Anziehung der Nukleonen und hält somit den Atomkern zusammen.
  • Die Kernkraft ist wesentlich stärker als die Gravitationswechselwirkung oder die elektromagnetische Wechselwirkung.
  • Für den Radius eines Atomkerns gilt näherungsweise \({{r_k} = 1{,}4 \cdot {10^{ - 15}}\,\rm{m} \cdot \sqrt[3]{A}}\), wo \(A\) die Nukleonenanzahl ist.

Zum Artikel Zu den Aufgaben

Energiebilanz bei Kernreaktionen

Grundwissen

  • Der Q-Wert einer Kernreaktion ist die Summe der nach der Kernreaktion vorliegenden kinetischen Energien und der Anregungsenergie \({E^*}\left({\rm{Y}}\right)\) von \(\rm{Y}\) vermindert um die vor der Reaktion vorliegenden kinetischen Energien.
  • Ist der Q-Wert positiv, so ist die Kernreaktion exotherm, ist der Q-Wert negativ, so ist die Kernreaktion endotherm.
  • Der Q-Wert lässt sich berechnen als die Differenz der Ruheenergien vor der Reaktion und der Ruheenergien nach der Reaktion: \(Q = \left( {{m_0}\left( {\rm{x}} \right) \cdot {c^2} + {m_0}\left( {\rm{X}} \right) \cdot {c^2}} \right) - \left( {{m_0}\left( {\rm{y}} \right) \cdot {c^2} + {m_0}\left( {\rm{Y}} \right) \cdot {c^2}} \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Q-Wert einer Kernreaktion ist die Summe der nach der Kernreaktion vorliegenden kinetischen Energien und der Anregungsenergie \({E^*}\left({\rm{Y}}\right)\) von \(\rm{Y}\) vermindert um die vor der Reaktion vorliegenden kinetischen Energien.
  • Ist der Q-Wert positiv, so ist die Kernreaktion exotherm, ist der Q-Wert negativ, so ist die Kernreaktion endotherm.
  • Der Q-Wert lässt sich berechnen als die Differenz der Ruheenergien vor der Reaktion und der Ruheenergien nach der Reaktion: \(Q = \left( {{m_0}\left( {\rm{x}} \right) \cdot {c^2} + {m_0}\left( {\rm{X}} \right) \cdot {c^2}} \right) - \left( {{m_0}\left( {\rm{y}} \right) \cdot {c^2} + {m_0}\left( {\rm{Y}} \right) \cdot {c^2}} \right)\)

Zum Artikel Zu den Aufgaben

Kettenreaktion

Grundwissen

  • Da bei der Spaltung von U‑235 durch Neutronenbeschuss mehrere Neutronen entstehen, ist eine Kettenreaktion möglich.
  • Die bei einer Kernspaltung entstehenden schnellen Neutronen müssen jedoch durch einen Moderator (z.B. Wasser) zu thermischen Neutronen abgebremst werden, damit diese wieder wahrscheinlich genug Urankerne spalten.
  • Um eine Kettenreaktion aufrecht erhalten zu können, ist eine kritische Masse an Spaltmaterial nötig.
  • Eine Kettenreaktion wird z.B. mit Steuerstäben reguliert, die die Zahl der freien Neutronen reduzieren.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Da bei der Spaltung von U‑235 durch Neutronenbeschuss mehrere Neutronen entstehen, ist eine Kettenreaktion möglich.
  • Die bei einer Kernspaltung entstehenden schnellen Neutronen müssen jedoch durch einen Moderator (z.B. Wasser) zu thermischen Neutronen abgebremst werden, damit diese wieder wahrscheinlich genug Urankerne spalten.
  • Um eine Kettenreaktion aufrecht erhalten zu können, ist eine kritische Masse an Spaltmaterial nötig.
  • Eine Kettenreaktion wird z.B. mit Steuerstäben reguliert, die die Zahl der freien Neutronen reduzieren.

Zum Artikel Zu den Aufgaben

Nuklidkarte

Grundwissen

  • Die Nuklidkarte ist ein Ordnungsschema für die Isotope aller Elemente
  • Aus der Nuklidkarte wird die Art des Zerfalls von nicht stabilen Kernen deutlich

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Nuklidkarte ist ein Ordnungsschema für die Isotope aller Elemente
  • Aus der Nuklidkarte wird die Art des Zerfalls von nicht stabilen Kernen deutlich

Zum Artikel Zu den Aufgaben

Kennzahlen von Kernen

Grundwissen

  • Die Kernladungszahl \(Z\) gibt die Zahl der Protonen in einem Kern an.
  • Die Summe aus Protonenzahl \(Z\) und Neutronenzahl \(N\) eines Atomkerns ergibt seine Massezahl \(A\).
  • In Elementschreibweise notiert man \({^{A\!}_{Z\!}X}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Kernladungszahl \(Z\) gibt die Zahl der Protonen in einem Kern an.
  • Die Summe aus Protonenzahl \(Z\) und Neutronenzahl \(N\) eines Atomkerns ergibt seine Massezahl \(A\).
  • In Elementschreibweise notiert man \({^{A\!}_{Z\!}X}\).

Zum Artikel Zu den Aufgaben

Energiebilanz beim Beta-Plus-Zerfall

Grundwissen

  • Beim Beta-Plus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Proton in ein Neutron um. Gleichzeitig wird ein \(\beta^+\)-Teilchen (Positron) und ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z-1}^A{\rm{Y}} +\;_{1}^0{\rm{e^+}}+\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-2 \cdot m_{\rm{e}}\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Beta-Plus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Proton in ein Neutron um. Gleichzeitig wird ein \(\beta^+\)-Teilchen (Positron) und ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z-1}^A{\rm{Y}} +\;_{1}^0{\rm{e^+}}+\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-2 \cdot m_{\rm{e}}\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Energiebilanz beim EC-Prozess oder K-Einfang

Grundwissen

  • Beim EC-Prozess oder K-Einfang wandelt sich im Mutterkern \(\rm{X}\) ein Proton zusammen mit einem Elektron (meist aus der K-Schale) in ein Neutron um. Gleichzeitig wird ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}} +\;_{-1}^0{\rm{e^-}} \to\;_{Z-1}^A{\rm{Y}} +\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim EC-Prozess oder K-Einfang wandelt sich im Mutterkern \(\rm{X}\) ein Proton zusammen mit einem Elektron (meist aus der K-Schale) in ein Neutron um. Gleichzeitig wird ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}} +\;_{-1}^0{\rm{e^-}} \to\;_{Z-1}^A{\rm{Y}} +\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Kurzer Überblick: Was ist Teilchenphysik?

Grundwissen

  • Teilchenphysik ist ein relativ junger Teilbereich der Physik
  • Teilchenphysik beschäftigt sich mit den elementaren Bausteinen der Materie, den sog. Elementarteilchen.
  • Teilchenphysik untersucht, wie die Elementarteilchen miteinander wechselwirken.

Zum Artikel
Grundwissen

  • Teilchenphysik ist ein relativ junger Teilbereich der Physik
  • Teilchenphysik beschäftigt sich mit den elementaren Bausteinen der Materie, den sog. Elementarteilchen.
  • Teilchenphysik untersucht, wie die Elementarteilchen miteinander wechselwirken.

Zum Artikel Zu den Aufgaben

Das Prinzip der Vereinfachung

Grundwissen

  • Ein Ziel der modernen Physik ist eine einheitliche Theorie zur Beschreibung aller Phänomene in der Welt zu finden.
  • Dazu werden schrittweise Theorien wie z.B. die Fallgesetze auf der Erde und die Bewegung der Planeten mit einer einheitlichen Theorie beschrieben, hier der universellen Gravitation.

Zum Artikel
Grundwissen

  • Ein Ziel der modernen Physik ist eine einheitliche Theorie zur Beschreibung aller Phänomene in der Welt zu finden.
  • Dazu werden schrittweise Theorien wie z.B. die Fallgesetze auf der Erde und die Bewegung der Planeten mit einer einheitlichen Theorie beschrieben, hier der universellen Gravitation.

Zum Artikel Zu den Aufgaben

Symmetrien und Erhaltungssätze

Grundwissen

  •  Bei jeder Umwandlung von Teilchen oder jedem Wechselwirkungsprozess sind die elektrische, die starke Ladung und meistens auch die schwache Ladung erhalten.
  • Es gibt bei der schwachen Ladung nur wenige Ausnahmen, die alle mit dem Higgs-Teilchen oder Higgs-Feld zu tun haben.
  • Den Zusammenhang zwischen Erhaltungsgrößen und Symmetrien beschreibt das NOETHER-Theorem.

Zum Artikel
Grundwissen

  •  Bei jeder Umwandlung von Teilchen oder jedem Wechselwirkungsprozess sind die elektrische, die starke Ladung und meistens auch die schwache Ladung erhalten.
  • Es gibt bei der schwachen Ladung nur wenige Ausnahmen, die alle mit dem Higgs-Teilchen oder Higgs-Feld zu tun haben.
  • Den Zusammenhang zwischen Erhaltungsgrößen und Symmetrien beschreibt das NOETHER-Theorem.

Zum Artikel Zu den Aufgaben

Das Standardmodell der Teilchenphysik

Grundwissen

  • Das Standardmodell der Teilchenphysik ist die aktuelle Theorie zur Beschreibung von subatomaren Vorgängen.
  • Das Standardmodell basiert auf Symmetrien, sog. lokalen Eichsymmetrien, die die Flexibilität der Natur gut beschreiben.

Zum Artikel
Grundwissen

  • Das Standardmodell der Teilchenphysik ist die aktuelle Theorie zur Beschreibung von subatomaren Vorgängen.
  • Das Standardmodell basiert auf Symmetrien, sog. lokalen Eichsymmetrien, die die Flexibilität der Natur gut beschreiben.

Zum Artikel Zu den Aufgaben

Die vier fundamentalen Wechselwirkungen

Grundwissen

  • Die vier fundamentalen Wechselwirkungen sind die starke Wechselwirkung, die schwache Wechselwirkung, die elektromagnetische Wechselwirkung und die Gravitation.
  • Für das Standardmodell spielt die Gravitation zunächst keine zentrale Rolle.
  • Zu jeder Wechselwirkung gehört eine eigene Ladung, deren Wert angibt, wie sensitiv ein Teilchen für diese Wechselwirkung ist.

Zum Artikel
Grundwissen

  • Die vier fundamentalen Wechselwirkungen sind die starke Wechselwirkung, die schwache Wechselwirkung, die elektromagnetische Wechselwirkung und die Gravitation.
  • Für das Standardmodell spielt die Gravitation zunächst keine zentrale Rolle.
  • Zu jeder Wechselwirkung gehört eine eigene Ladung, deren Wert angibt, wie sensitiv ein Teilchen für diese Wechselwirkung ist.

Zum Artikel Zu den Aufgaben

Elementarteilchen

Grundwissen

  • Die Elementarteilchen der Materie können gut in 3 Spalten, als Generationen bezeichnet, und 3 Zeilen eingeteilt werden.
  • Teilchen der 1. Generation sich up- und down-Quark, Elektron und Elektron-Neutrino und somit die Teilchen, die mit denen man normal in Berührung kommt. Die Teilchen der 2. und 3. Generation treten nur unter extremen Bedingungen auf.
  • Die elektrisch neutralen Leptonen in der ersten Reihe unterliegen nur der schwachen Wechselwirkung, geladene Leptonen in der zweiten Reihe auch der elektromagnetischen Wechselwirkung und Quarks in der dritten Reihe auch der starken Wechselwirkung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Elementarteilchen der Materie können gut in 3 Spalten, als Generationen bezeichnet, und 3 Zeilen eingeteilt werden.
  • Teilchen der 1. Generation sich up- und down-Quark, Elektron und Elektron-Neutrino und somit die Teilchen, die mit denen man normal in Berührung kommt. Die Teilchen der 2. und 3. Generation treten nur unter extremen Bedingungen auf.
  • Die elektrisch neutralen Leptonen in der ersten Reihe unterliegen nur der schwachen Wechselwirkung, geladene Leptonen in der zweiten Reihe auch der elektromagnetischen Wechselwirkung und Quarks in der dritten Reihe auch der starken Wechselwirkung.

Zum Artikel Zu den Aufgaben

Masse-Energie-Beziehung

Grundwissen

  • Bei der Kernspaltung und der Kernfusion tritt ein Massendefekt \(\Delta m\) auf: Die Gesamtmasse vor der Spaltung bzw. Fusion entspricht nicht der Gesamtmasse danach.
  • Der Massendefekt berechnet sich mit \(\Delta m =m_{\rm{vor}}-m_{\rm{nach}}\).
  • Nach Einstein sind Masse und Energie hier gleichwertig (äquivalent) und es gilt die Beziehung \(\Delta E=\Delta m\cdot c^2\)

Zum Artikel
Grundwissen

  • Bei der Kernspaltung und der Kernfusion tritt ein Massendefekt \(\Delta m\) auf: Die Gesamtmasse vor der Spaltung bzw. Fusion entspricht nicht der Gesamtmasse danach.
  • Der Massendefekt berechnet sich mit \(\Delta m =m_{\rm{vor}}-m_{\rm{nach}}\).
  • Nach Einstein sind Masse und Energie hier gleichwertig (äquivalent) und es gilt die Beziehung \(\Delta E=\Delta m\cdot c^2\)

Zum Artikel Zu den Aufgaben

Möglichkeiten der Kernfusion

Grundwissen

  • Verschiedene Atomkern können unter geeigneten Bedingungen miteinander fusionieren.
  • Die fusionierenden Atomkerne bestimmen, wie groß die frei werdende Energie ist.
  • Damit es zur Fusion kommen kann, müssen die elektrostatischen Abstoßungskräfte der Kerne überwunden werden.

Zum Artikel
Grundwissen

  • Verschiedene Atomkern können unter geeigneten Bedingungen miteinander fusionieren.
  • Die fusionierenden Atomkerne bestimmen, wie groß die frei werdende Energie ist.
  • Damit es zur Fusion kommen kann, müssen die elektrostatischen Abstoßungskräfte der Kerne überwunden werden.

Zum Artikel Zu den Aufgaben

Teilchen und Anti-Teilchen

Grundwissen

  • Zu jedem Materieteilchen gibt es ein Anti-Teilchen mit exakt der entgegengesetzten elektrischen, starken und schwachen Ladung.
  • Anti-Teilchen werden meist mit einem Querstrich über dem Teilchensymbol gekennzeichnet.
  • Trifft ein Materieteilchen auf sein Anti-Teilchen annihilieren sich beide (Paarvernichtung) - die vorhandene Energie wandelt sich in Botenteilchen um. 
  • Die Paarerzeugung kann nur unter bestimmten Rahmenbedingungen stattfinden, z.B. im Coulomb-Feld eines Atomkerns.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zu jedem Materieteilchen gibt es ein Anti-Teilchen mit exakt der entgegengesetzten elektrischen, starken und schwachen Ladung.
  • Anti-Teilchen werden meist mit einem Querstrich über dem Teilchensymbol gekennzeichnet.
  • Trifft ein Materieteilchen auf sein Anti-Teilchen annihilieren sich beide (Paarvernichtung) - die vorhandene Energie wandelt sich in Botenteilchen um. 
  • Die Paarerzeugung kann nur unter bestimmten Rahmenbedingungen stattfinden, z.B. im Coulomb-Feld eines Atomkerns.

Zum Artikel Zu den Aufgaben

Zusammenhang von Atom- und Kernmassen

Grundwissen

  • Die Atommasse \(m_{\rm{A}}\) unterscheidet sich von der Kernmasse \(m_{\rm{K}}\) um die Summe der Ruhemassen der im Atom gebundenen Elektronen und um die Bindungsenergie der Elektronen in der Atomhülle.
  • Die gesamte Elektronenbindungsenergie wird abgeschätzt mit \(B_{\rm{e}} = 15{,}73\,\rm{eV} \cdot Z^{\textstyle{7 \over 3}}\)
  • Oft reicht die näherungsweise Berechnung der Kernmasse mittels \(m_{\rm{K}}\left( \rm{X} \right) \approx m_{\rm{A}}\left( \rm{X} \right) - Z \cdot m_{\rm{e}}\)

Zum Artikel
Grundwissen

  • Die Atommasse \(m_{\rm{A}}\) unterscheidet sich von der Kernmasse \(m_{\rm{K}}\) um die Summe der Ruhemassen der im Atom gebundenen Elektronen und um die Bindungsenergie der Elektronen in der Atomhülle.
  • Die gesamte Elektronenbindungsenergie wird abgeschätzt mit \(B_{\rm{e}} = 15{,}73\,\rm{eV} \cdot Z^{\textstyle{7 \over 3}}\)
  • Oft reicht die näherungsweise Berechnung der Kernmasse mittels \(m_{\rm{K}}\left( \rm{X} \right) \approx m_{\rm{A}}\left( \rm{X} \right) - Z \cdot m_{\rm{e}}\)

Zum Artikel Zu den Aufgaben

Altersbestimmung mit der Radiocarbonmethode

Grundwissen

  • C‑14 ist ein natürliches radioaktives Kohlenstoffisotop, dass in jedem lebenden Organismus einen festen Anteil an allen Kohlenstoffisotope hat.
  • Stirbt ein Organismus ab, so nimmt ab diesem Zeitpunkt der C‑14-Anteil entsprechend des Zerfallsgesetzes ab \(T_{1/2}\left(\text{C-14}\right)=5730\,\rm{a}\).
  • Aus dem verbleibenden C‑14-Anteil bzw. der entsprechenden Aktivität kann mit \(t = \frac{{\ln \left( {\frac{{N(t)}}{{N\left( 0 \right)}}} \right) \cdot {T_{1/2}}}}{{ - \ln (2)}}\)  das Alter der Probe berechnet werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • C‑14 ist ein natürliches radioaktives Kohlenstoffisotop, dass in jedem lebenden Organismus einen festen Anteil an allen Kohlenstoffisotope hat.
  • Stirbt ein Organismus ab, so nimmt ab diesem Zeitpunkt der C‑14-Anteil entsprechend des Zerfallsgesetzes ab \(T_{1/2}\left(\text{C-14}\right)=5730\,\rm{a}\).
  • Aus dem verbleibenden C‑14-Anteil bzw. der entsprechenden Aktivität kann mit \(t = \frac{{\ln \left( {\frac{{N(t)}}{{N\left( 0 \right)}}} \right) \cdot {T_{1/2}}}}{{ - \ln (2)}}\)  das Alter der Probe berechnet werden.

Zum Artikel Zu den Aufgaben

GEIGER-MÜLLER-Zählrohr

Grundwissen

  • Ein Geiger-Müller-Zählrohr (umgangssprachlich häufig Geigerzähler genannt) ist ein robustes Nachweisgerät für ionisierende Strahlung.
  • Mit Geiger-Müller-Zählrohren können \(\alpha\)- und \(\beta\)-Strahlung besonders gut nachgewiesen werden, \(\gamma\)-Strahlung wird jedoch nur zu einem kleinen Teil registriert.
  • Ein Geiger-Müller-Zählrohr wird meist an einen Digitalzähler oder einen Lautsprecher angeschlossen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Geiger-Müller-Zählrohr (umgangssprachlich häufig Geigerzähler genannt) ist ein robustes Nachweisgerät für ionisierende Strahlung.
  • Mit Geiger-Müller-Zählrohren können \(\alpha\)- und \(\beta\)-Strahlung besonders gut nachgewiesen werden, \(\gamma\)-Strahlung wird jedoch nur zu einem kleinen Teil registriert.
  • Ein Geiger-Müller-Zählrohr wird meist an einen Digitalzähler oder einen Lautsprecher angeschlossen.

Zum Artikel Zu den Aufgaben

Tröpfchenmodell des Atomkerns

Grundwissen

  • Das Tröpfchenmodell geht von einer konstanten Materiedichte im Kern ähnlich wie bei einen Flüssigkeitstropfen aus.
  • Die Ruhemasse eines Kerns kann mit \({m_{{\rm{K}}{\rm{,0}}}} = Z \cdot {m_{p,0}} + N \cdot {m_{n,0}} - \frac{B}{{{c^2}}}\) berechnet werden, wobei \(B\) die Bindungsenergie ist.
  • Die Bindungsenergie setzt sich unter anderem aus der Volumenenergie, der Oberflächenenergie und der Coulomb-Energie zusammen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Tröpfchenmodell geht von einer konstanten Materiedichte im Kern ähnlich wie bei einen Flüssigkeitstropfen aus.
  • Die Ruhemasse eines Kerns kann mit \({m_{{\rm{K}}{\rm{,0}}}} = Z \cdot {m_{p,0}} + N \cdot {m_{n,0}} - \frac{B}{{{c^2}}}\) berechnet werden, wobei \(B\) die Bindungsenergie ist.
  • Die Bindungsenergie setzt sich unter anderem aus der Volumenenergie, der Oberflächenenergie und der Coulomb-Energie zusammen.

Zum Artikel Zu den Aufgaben

Bindungsenergie

Grundwissen

  • Die Bindungsenergie \(B\) ist die beim Zusammenbau eines Kerns aus seinen Einzelbausteinen freiwerdende Energie.
  • Die mittlere Bindungsenergie pro Nukleon hat den Wert \(\frac{B}{A}\)
  • Eisen besitzt die größte Bindungsenergie pro Nukleon.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Bindungsenergie \(B\) ist die beim Zusammenbau eines Kerns aus seinen Einzelbausteinen freiwerdende Energie.
  • Die mittlere Bindungsenergie pro Nukleon hat den Wert \(\frac{B}{A}\)
  • Eisen besitzt die größte Bindungsenergie pro Nukleon.

Zum Artikel Zu den Aufgaben