Direkt zum Inhalt
Suchergebnisse 31 - 53 von 53

Polarisation von Licht - Einführung

Grundwissen

  • Die Polarisation beschreibt die Schwingungsrichtung einer Transversalwelle.
  • Lineare Polarisationsfilter können nur von Licht einer bestimmten Schwingungsrichtung passiert werden.
  • Laserlicht und das Licht von Computerdisplays ist polarisiert.

Zum Artikel
Grundwissen

  • Die Polarisation beschreibt die Schwingungsrichtung einer Transversalwelle.
  • Lineare Polarisationsfilter können nur von Licht einer bestimmten Schwingungsrichtung passiert werden.
  • Laserlicht und das Licht von Computerdisplays ist polarisiert.

Zum Artikel Zu den Aufgaben

Konstruktionsstrahlen

Versuche
Versuche

Atommodell von THOMSON

Ausblick
Ausblick

Philipp LENARD (1862 -1947)

Geschichte
Geschichte

Energiezustände im BOHRschen Atommodell

Grundwissen

  • Durch die Quantenbedingung von BOHR kann die Energie eines Atoms nur bestimmte Werte annehmen.
  • Die Energie, um Wasserstoff aus dem Grundzustand heraus zu ionisieren beträgt \(13{,}6\,\rm{eV}\) (Ionisierungsenergie).
  • Die Gesamtenergie eines Elektrons im Wasserstoffatom gilt \({E_{{\rm{ges}}{\rm{,n}}}} = - R_{\infty} \cdot h \cdot c \cdot \frac{1}{{{n^2}}}\), wobei \(R_{\infty}\) die Rydberg-Konstante ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Durch die Quantenbedingung von BOHR kann die Energie eines Atoms nur bestimmte Werte annehmen.
  • Die Energie, um Wasserstoff aus dem Grundzustand heraus zu ionisieren beträgt \(13{,}6\,\rm{eV}\) (Ionisierungsenergie).
  • Die Gesamtenergie eines Elektrons im Wasserstoffatom gilt \({E_{{\rm{ges}}{\rm{,n}}}} = - R_{\infty} \cdot h \cdot c \cdot \frac{1}{{{n^2}}}\), wobei \(R_{\infty}\) die Rydberg-Konstante ist.

Zum Artikel Zu den Aufgaben

Originalarbeit von MOSELEY

Geschichte
Geschichte

Vergleich der Weltbilder

Geschichte
Geschichte

Weltsysteme im Vergleich

Geschichte
Geschichte

Komplexe optische Spektren

Ausblick
Ausblick

Aufbau der Sonne

Grundwissen

  • Der Kern der Sonne stellt einen Fusionsreaktor dar, der letztendlich für die abgestrahlte Energie verantwortlich ist.
  •  Im Inneren der Sonne wird die Energie zunächst durch Strahlung (Strahlenzone), dann durch Konvektion (Konvektionszone) transportiert.
  • In der Photosphäre entsteht der kontinuierliche Teil der Sonnenstrahlung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Kern der Sonne stellt einen Fusionsreaktor dar, der letztendlich für die abgestrahlte Energie verantwortlich ist.
  •  Im Inneren der Sonne wird die Energie zunächst durch Strahlung (Strahlenzone), dann durch Konvektion (Konvektionszone) transportiert.
  • In der Photosphäre entsteht der kontinuierliche Teil der Sonnenstrahlung.

Zum Artikel Zu den Aufgaben

Heiße Anfangsphase

Ausblick
Ausblick

Sterngeburt

Grundwissen

  • Gas-, Staub- und Molekülwolken an den Rändern der Spiralarme der Galaxis sind Gebiete der Sternentstehung, da hier interstellare Masse konzentriert ist.
  • Das JEANS-Kriterium besagt, dass eine Gaswolke kollabiert und ein Stern entstehen kann, wenn ihre Masse größer als die JEANS-Masse ist.

Zum Artikel
Grundwissen

  • Gas-, Staub- und Molekülwolken an den Rändern der Spiralarme der Galaxis sind Gebiete der Sternentstehung, da hier interstellare Masse konzentriert ist.
  • Das JEANS-Kriterium besagt, dass eine Gaswolke kollabiert und ein Stern entstehen kann, wenn ihre Masse größer als die JEANS-Masse ist.

Zum Artikel Zu den Aufgaben

Entwicklung schwerer Sterne

Grundwissen

  • Massereiche Sterne der Hauptreihe kollabieren unter ihrer eigenen Gravitation, wenn im Kern kein Energiegewinn mittels Fusion mehr möglich ist.
  • Neutronensterne besitzen kleine Radien von etwas \(10\) bis \(13\,\rm{km}\) und eine extrem hohe Dichte.
  • Schnell rotierende Neutronensterne können gerichtete Radiostrahlung aussenden, die bei günstiger geometrischer Lage auf der Erde detektiert werden können. Solche Sterne nennt man Pulsare.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Massereiche Sterne der Hauptreihe kollabieren unter ihrer eigenen Gravitation, wenn im Kern kein Energiegewinn mittels Fusion mehr möglich ist.
  • Neutronensterne besitzen kleine Radien von etwas \(10\) bis \(13\,\rm{km}\) und eine extrem hohe Dichte.
  • Schnell rotierende Neutronensterne können gerichtete Radiostrahlung aussenden, die bei günstiger geometrischer Lage auf der Erde detektiert werden können. Solche Sterne nennt man Pulsare.

Zum Artikel Zu den Aufgaben

Geschichte der Polarisation

Geschichte
Geschichte

Streuversuch und Atommodell von RUTHERFORD

Grundwissen

  • Im RUTHERFORDschen Streuversuch wird eine dünne Metallfolie mit \(\alpha\)-Teilchen (positiv geladen) beschossen.
  • Entgegen den Erwartungen werden einige wenige \(\alpha\)-Teilchen von der Folie sogar zurückgestreut.
  • Das Modell von RUTHERFORD führt den sehr kleinen, positiv geladenen Atomkern ein, in dem fast die gesamte Masse des Atoms vereinigt ist.
  • Das Modell kann nicht erklären, warum die Elektronen nicht in den Kern stürzen und wie diskrete Spektrallinien zustande kommen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im RUTHERFORDschen Streuversuch wird eine dünne Metallfolie mit \(\alpha\)-Teilchen (positiv geladen) beschossen.
  • Entgegen den Erwartungen werden einige wenige \(\alpha\)-Teilchen von der Folie sogar zurückgestreut.
  • Das Modell von RUTHERFORD führt den sehr kleinen, positiv geladenen Atomkern ein, in dem fast die gesamte Masse des Atoms vereinigt ist.
  • Das Modell kann nicht erklären, warum die Elektronen nicht in den Kern stürzen und wie diskrete Spektrallinien zustande kommen.

Zum Artikel Zu den Aufgaben

Ultraviolett

Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(380\,{\rm nm}\) und \(1\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(789\,{\rm THz}\) bis \(300\,{\rm PHz}\)
  • Anwendungen: Schwarzlichtlampen, Geldscheinprüfung, Härtung von Klebstoffen

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(380\,{\rm nm}\) und \(1\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(789\,{\rm THz}\) bis \(300\,{\rm PHz}\)
  • Anwendungen: Schwarzlichtlampen, Geldscheinprüfung, Härtung von Klebstoffen

Zum Artikel Zu den Aufgaben

Sonnenspektrum

Grundwissen

  • Das von der Sonne kommende Licht ähnelt dem Spektrum eines schwarzen Körpers.
  • Das Maximum der Strahlung liegt bei etwa \(550\,\rm{nm}\), also im Bereich von blau-grünem Licht.
  • Im Sonnenspektrum zeigen sich viele Absorptionslinien (FRAUNHOFER-Linien), die Rückschlüsse z.B. auf die Zusammensetzung unsere Atmosphäre ermöglichen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das von der Sonne kommende Licht ähnelt dem Spektrum eines schwarzen Körpers.
  • Das Maximum der Strahlung liegt bei etwa \(550\,\rm{nm}\), also im Bereich von blau-grünem Licht.
  • Im Sonnenspektrum zeigen sich viele Absorptionslinien (FRAUNHOFER-Linien), die Rückschlüsse z.B. auf die Zusammensetzung unsere Atmosphäre ermöglichen.

Zum Artikel Zu den Aufgaben

Infrarot

Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm mm}\) und \(780\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(300\,{\rm GHz}\) bis \(385\,{\rm THz}\)
  • Anwendungen: Fernbedienungen, Temperaturmessung, Vegetationsbestimmung

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm mm}\) und \(780\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(300\,{\rm GHz}\) bis \(385\,{\rm THz}\)
  • Anwendungen: Fernbedienungen, Temperaturmessung, Vegetationsbestimmung

Zum Artikel Zu den Aufgaben

Grundversuch zum Brechungsgesetz

Versuche

  • Messwertaufnahme der Einfalls- und Ausfallswinkel beim Übergang von Luft zu Plexiglas
  • Erstellung und Analyse eines Diagramm \({\alpha _{{\rm{L}}}}\)-\({\alpha _{{\rm{PG}}}}\)-Diagramms
  • Vertiefung: Brechungsgesetz

Zum Artikel
Versuche

  • Messwertaufnahme der Einfalls- und Ausfallswinkel beim Übergang von Luft zu Plexiglas
  • Erstellung und Analyse eines Diagramm \({\alpha _{{\rm{L}}}}\)-\({\alpha _{{\rm{PG}}}}\)-Diagramms
  • Vertiefung: Brechungsgesetz

Zum Artikel Zu den Aufgaben

Entwicklung der Atomvorstellung

Geschichte
Geschichte

Unsichtbares Licht

Weblink

In dieser Unterrichtseinheit zum "unsichtbaren Licht" erfahren die Lernenden, dass man Licht als elektromagnetische Welle verstehen kann und dass das Wellenlängenspektrum dieser Strahlung weit über den sichtbaren Bereich hinausgeht. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden.

Zum externen Weblink
Weblink

In dieser Unterrichtseinheit zum "unsichtbaren Licht" erfahren die Lernenden, dass man Licht als elektromagnetische Welle verstehen kann und dass das Wellenlängenspektrum dieser Strahlung weit über den sichtbaren Bereich hinausgeht. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden.

Zum externen Weblink