Direkt zum Inhalt
Suchergebnisse 181 - 201 von 201

Additive Farbmischung

Ausblick
Ausblick

Regenbogen

Ausblick
Ausblick

GALILEI- oder holländisches Fernrohr

Ausblick
Ausblick

Botafumeiro (Simulation)

Ausblick
Ausblick

Messung der Lichtgeschwindigkeit nach RØMER

Geschichte
Geschichte

Feder-Schwere-Pendel

Grundwissen

  • Ein Feder-Schwere-Pendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = \hat{y} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega } = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{y} \) der Schwingung und dem Ortsfaktor \(g\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Feder-Schwere-Pendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = \hat{y} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega } = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{y} \) der Schwingung und dem Ortsfaktor \(g\).

Zum Artikel Zu den Aufgaben

Massen und Federn (Simulation von PhET)

Versuche
Versuche

Wechselwirkungskräfte mit Sensoren

Versuche

Der Versuch veranschaulicht in Diagrammform, dass Wechselwirkungskräfte immer gleich groß, aber entgegengesetzt gerichtet sind.

Zum Artikel
Versuche

Der Versuch veranschaulicht in Diagrammform, dass Wechselwirkungskräfte immer gleich groß, aber entgegengesetzt gerichtet sind.

Zum Artikel Zu den Aufgaben

Hookesches Gesetz (Demonstrationsexperiment)

Versuche

  • Visualisierung des proportionalen Zusammenhangs von Dehnung und Kraft
  • Interpretation der Geradensteigung als Federkonstante \(D\)
  • Grafische Versuchsauswertung für zwei verschiedene Federn

Zum Artikel
Versuche

  • Visualisierung des proportionalen Zusammenhangs von Dehnung und Kraft
  • Interpretation der Geradensteigung als Federkonstante \(D\)
  • Grafische Versuchsauswertung für zwei verschiedene Federn

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung einer Kreisbewegung

Grundwissen

  • Das (Dreh-)Zentrum \(Z\) ist der Mittelpunkt der Kreisbahn.
  • Der Bahnradius \(r\) ist die (konstant bleibende) Entfernung des Körpers zum Drehzentrum.
  • Die Umlaufdauer \(T\) gibt an, wie lange ein Körper für einen vollständigen Umlauf der Kreisbahn benötigt.
  • Die Frequenz \(f\) ist der Kehrwert der Umlaufdauer: \(f=\frac{1}{T}\). Sie gibt an, wie viele Umläufe ein Körper pro Zeiteinheit absolviert.
  • Mit \(s\) bezeichnen wir die Länge der (Bahn-)Strecke, die der Körper seit dem Start der Kreisbewegung auf der Kreisbahn zurückgelegt hat.
  • Mit \(\varphi\) bezeichnen wir die Weite des Drehwinkels, den der Bahnradius seit dem Start der Kreisbewegung überstrichen hat.
  • Winkel werden bei der Beschreibung von Kreisbewegungen meist im Bogenmaß angegeben. Eine volle Umdrehung von \(360^\circ\) entspricht im Bogenmaß dem Wert \(2\pi\)
  • Es gilt \(s = \varphi  \cdot r \quad {\rm{bzw.}} \quad \varphi  = \frac{s}{r}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das (Dreh-)Zentrum \(Z\) ist der Mittelpunkt der Kreisbahn.
  • Der Bahnradius \(r\) ist die (konstant bleibende) Entfernung des Körpers zum Drehzentrum.
  • Die Umlaufdauer \(T\) gibt an, wie lange ein Körper für einen vollständigen Umlauf der Kreisbahn benötigt.
  • Die Frequenz \(f\) ist der Kehrwert der Umlaufdauer: \(f=\frac{1}{T}\). Sie gibt an, wie viele Umläufe ein Körper pro Zeiteinheit absolviert.
  • Mit \(s\) bezeichnen wir die Länge der (Bahn-)Strecke, die der Körper seit dem Start der Kreisbewegung auf der Kreisbahn zurückgelegt hat.
  • Mit \(\varphi\) bezeichnen wir die Weite des Drehwinkels, den der Bahnradius seit dem Start der Kreisbewegung überstrichen hat.
  • Winkel werden bei der Beschreibung von Kreisbewegungen meist im Bogenmaß angegeben. Eine volle Umdrehung von \(360^\circ\) entspricht im Bogenmaß dem Wert \(2\pi\)
  • Es gilt \(s = \varphi  \cdot r \quad {\rm{bzw.}} \quad \varphi  = \frac{s}{r}\)

Zum Artikel Zu den Aufgaben

Hemmungspendel (Galilei-Pendel)

Ausblick

  • Das gehemmte Pendel schwingt auf beiden Seiten gleich hoch (Energieerhaltung).
  • Bei mittig platziertem Hindernis gilt für die Periodendauer des gehemmten Pendels \(T=\frac{T_1}{2}+\frac{T_2}{2}\)
  • Wenn das Pendel höher als das Hindernis ausgelenkt wird, kommt keine Schwingung mehr zu stande.

Zum Artikel
Ausblick

  • Das gehemmte Pendel schwingt auf beiden Seiten gleich hoch (Energieerhaltung).
  • Bei mittig platziertem Hindernis gilt für die Periodendauer des gehemmten Pendels \(T=\frac{T_1}{2}+\frac{T_2}{2}\)
  • Wenn das Pendel höher als das Hindernis ausgelenkt wird, kommt keine Schwingung mehr zu stande.

Zum Artikel Zu den Aufgaben

Hookesches Gesetz bei Gummis

Versuche

  • Aufnahme eines Dehnungs-Kraft-Diagramms bei einem Gummi.
  • Untersuchung der Anwendbarkeit des Hookeschen Gesetzes.

Zum Artikel
Versuche

  • Aufnahme eines Dehnungs-Kraft-Diagramms bei einem Gummi.
  • Untersuchung der Anwendbarkeit des Hookeschen Gesetzes.

Zum Artikel Zu den Aufgaben

Licht und Farben

Grundwissen

  • Licht hat keine Farbe.
  • Wenn Licht aber auf die Netzhaut im Auge trifft, senden die verschiedenen lichtempfindlichen Zapfen elektrische Impulse an das Gehirn. Dort werden diese Impulse verarbeitet und im Gehirn wird ein Farbeindruck erzeugt.
  • Licht aus verschiedenen Bereichen des Lichtbündels, das nach der Zerlegung von Sonnenlicht entsteht, erzeugt jeweils einen anderen Farbeindruck. Wir unterscheiden das Licht deshalb nach diesem Farbeindruck und bezeichnen z.B. Licht aus dem linken Bereich des Lichtbündels als "Licht der Spektralfarbe Rot" oder kurz als "rotes Licht".
  • Ist Licht verschiedener Spektralfarben gemischt, dann kann dieses Licht Farbeindrücke erzeugen, die mit Licht einer einzelnen Spektralfarbe nicht erzeugt werden können.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Licht hat keine Farbe.
  • Wenn Licht aber auf die Netzhaut im Auge trifft, senden die verschiedenen lichtempfindlichen Zapfen elektrische Impulse an das Gehirn. Dort werden diese Impulse verarbeitet und im Gehirn wird ein Farbeindruck erzeugt.
  • Licht aus verschiedenen Bereichen des Lichtbündels, das nach der Zerlegung von Sonnenlicht entsteht, erzeugt jeweils einen anderen Farbeindruck. Wir unterscheiden das Licht deshalb nach diesem Farbeindruck und bezeichnen z.B. Licht aus dem linken Bereich des Lichtbündels als "Licht der Spektralfarbe Rot" oder kurz als "rotes Licht".
  • Ist Licht verschiedener Spektralfarben gemischt, dann kann dieses Licht Farbeindrücke erzeugen, die mit Licht einer einzelnen Spektralfarbe nicht erzeugt werden können.

Zum Artikel Zu den Aufgaben

Bestimmung von Wellenlängen mit dem Doppelspalt (Näherungsformel) - Formelumstellung

Aufgabe ( Einstiegsaufgaben )

Um Aufgaben zur Bestimmung von Wellenlängen mit dem Doppelspalt zu lösen musst du häufig die Gleichung \(\lambda = \frac{{d \cdot {a_k}}}{{k \cdot…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Um Aufgaben zur Bestimmung von Wellenlängen mit dem Doppelspalt zu lösen musst du häufig die Gleichung \(\lambda = \frac{{d \cdot {a_k}}}{{k \cdot…

Zur Aufgabe