Direkt zum Inhalt
Suchergebnisse 181 - 210 von 315

Phasenübergänge

Grundwissen

  • Phasenübergänge sind zwischen allen Zuständen (fest. flüssig, gasförmig) möglich.
  • Bei Phasenübergängen muss Energie hinzugefügt werden bzw. wird Energie frei. Die Temperatur verändert sich dabei zunächst nicht.
  • Bei den Phasenübergängen verändern sich die Bindungen zwischen den Teilchen. Die potentielle Energie (Teil der inneren Energie) ändert sich hierbei

Zum Artikel Zu den Aufgaben
Grundwissen

  • Phasenübergänge sind zwischen allen Zuständen (fest. flüssig, gasförmig) möglich.
  • Bei Phasenübergängen muss Energie hinzugefügt werden bzw. wird Energie frei. Die Temperatur verändert sich dabei zunächst nicht.
  • Bei den Phasenübergängen verändern sich die Bindungen zwischen den Teilchen. Die potentielle Energie (Teil der inneren Energie) ändert sich hierbei

Zum Artikel Zu den Aufgaben

Erster Hauptsatz der Wärmelehre

Grundwissen

  • Die innere Energie \(E_{\rm{i}}\) eines Systems kann durch Zufuhr oder Entzug von mechanische Arbeit \(W\) und/oder einer Wärmemenge \(Q\) erhöht oder verringert werden.
  • Der 1. Hauptsatz der Wärmelehre lautet \(\Delta E_{\rm i} = W + Q\).

Zum Artikel
Grundwissen

  • Die innere Energie \(E_{\rm{i}}\) eines Systems kann durch Zufuhr oder Entzug von mechanische Arbeit \(W\) und/oder einer Wärmemenge \(Q\) erhöht oder verringert werden.
  • Der 1. Hauptsatz der Wärmelehre lautet \(\Delta E_{\rm i} = W + Q\).

Zum Artikel Zu den Aufgaben

Wärmeleitung

Grundwissen

  • Bei der Wärmeleitung bewegt sich nur die Wärme durch den Körper, die einzelnen Teilchen, aus denen der Körper besteht, bleiben dagegen an ihrem Platz
  • Wärmeleitung tritt deshalb meistens beim Wärmetransport in und zwischen Festkörpern auf
  • Metalle sind gute Wärmeleiter, Flüssigkeiten und Gase dagegen sind schlechte Wärmeleiter

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei der Wärmeleitung bewegt sich nur die Wärme durch den Körper, die einzelnen Teilchen, aus denen der Körper besteht, bleiben dagegen an ihrem Platz
  • Wärmeleitung tritt deshalb meistens beim Wärmetransport in und zwischen Festkörpern auf
  • Metalle sind gute Wärmeleiter, Flüssigkeiten und Gase dagegen sind schlechte Wärmeleiter

Zum Artikel Zu den Aufgaben

Wärmemitführung

Grundwissen

  • Bei der Wärmemitführung (Wärmeströmung, Konvektion) bewegt sich die Wärme mit den einzelnen Teilchen, aus denen der Körper besteht, durch den Körper hindurch - es findet also auch ein Materietransport statt
  • Wärmemitführung tritt in der Regel nur in Flüssigkeiten und Gasen auf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei der Wärmemitführung (Wärmeströmung, Konvektion) bewegt sich die Wärme mit den einzelnen Teilchen, aus denen der Körper besteht, durch den Körper hindurch - es findet also auch ein Materietransport statt
  • Wärmemitführung tritt in der Regel nur in Flüssigkeiten und Gasen auf.

Zum Artikel Zu den Aufgaben

Treibhauseffekt

Grundwissen

  • Man unterscheidet zwischen natürlichem und vom Menschen gemachten Treibhauseffekt.
  • Der natürliche Treibhauseffekt macht die Erde erst lebenswert.
  • Der menschengemachte Treibhauseffekt durch Ausstoß von Treibhausgasen sorgt für eine weitere Erderwärmung mit vielen negativen Folgen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man unterscheidet zwischen natürlichem und vom Menschen gemachten Treibhauseffekt.
  • Der natürliche Treibhauseffekt macht die Erde erst lebenswert.
  • Der menschengemachte Treibhauseffekt durch Ausstoß von Treibhausgasen sorgt für eine weitere Erderwärmung mit vielen negativen Folgen.

Zum Artikel Zu den Aufgaben

Ein- und Ausschalten von RL-Kreisen

Grundwissen

  • Insbesondere bei Ein- und Ausschaltvorgängen wird die Selbstinduktion deutlich
  • Strom- und Spannungsverlauf können mathematisch mittels \(e\)-Funktion exakt beschrieben werden

Zum Artikel Zu den Aufgaben
Grundwissen

  • Insbesondere bei Ein- und Ausschaltvorgängen wird die Selbstinduktion deutlich
  • Strom- und Spannungsverlauf können mathematisch mittels \(e\)-Funktion exakt beschrieben werden

Zum Artikel Zu den Aufgaben

Stehende Wellen - Entstehung

Grundwissen

  • Stehende Wellen können bei Überlagerung von zwei Wellen gleicher Frequenz und gleicher Amplitude entstehen.
  • Bei stehenden Wellen bilden sich Knoten (keine Auslenkung) und Bäuche (maximale Auslenkung im Vergleich zur Umgebung) aus.
  • Der Abstand zwischen zwei Knoten bzw. Bäuchen beträgt \(\frac{\lambda}{2}\) der sich überlagernden Wellen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Stehende Wellen können bei Überlagerung von zwei Wellen gleicher Frequenz und gleicher Amplitude entstehen.
  • Bei stehenden Wellen bilden sich Knoten (keine Auslenkung) und Bäuche (maximale Auslenkung im Vergleich zur Umgebung) aus.
  • Der Abstand zwischen zwei Knoten bzw. Bäuchen beträgt \(\frac{\lambda}{2}\) der sich überlagernden Wellen.

Zum Artikel Zu den Aufgaben

Wellenfunktion

Grundwissen

  • Die Wellenfunktion beschreibt die Auslenkung eines von der Welle erfassten Teilchens in \(y\)-Richtung an einem beliebigen Ort \(x\) zu einem beliebigen Zeitpunkt \(t\).
  • Die Wellenfunktion für eine in positive \(x\)-Richtung laufende Welle lautet \(y(x;t) = \hat y \cdot \sin \left( {2\,\pi  \cdot \left( {\frac{t}{T} - \frac{x}{\lambda }} \right)} \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Wellenfunktion beschreibt die Auslenkung eines von der Welle erfassten Teilchens in \(y\)-Richtung an einem beliebigen Ort \(x\) zu einem beliebigen Zeitpunkt \(t\).
  • Die Wellenfunktion für eine in positive \(x\)-Richtung laufende Welle lautet \(y(x;t) = \hat y \cdot \sin \left( {2\,\pi  \cdot \left( {\frac{t}{T} - \frac{x}{\lambda }} \right)} \right)\)

Zum Artikel Zu den Aufgaben

Potenzschreibweise

Grundwissen

  • Sehr große und sehr kleine Zahlen kannst du mithilfe von Zehnerpotenzen übersichtlich darstellen.
  • Beispiele: \(13000000=1{,}3\cdot 10^7\) und \(0{,}0000123=1{,}23\cdot 10^{-5}\)

Zum Artikel
Grundwissen

  • Sehr große und sehr kleine Zahlen kannst du mithilfe von Zehnerpotenzen übersichtlich darstellen.
  • Beispiele: \(13000000=1{,}3\cdot 10^7\) und \(0{,}0000123=1{,}23\cdot 10^{-5}\)

Zum Artikel Zu den Aufgaben

Direkte Proportionalität

Grundwissen

  • Bei zwei zueinander direkt proportionalen Größen gehört zum Doppelten, Dreifachen, . . . n-fachen der Größe \(x\) das Doppelte, Dreifache, . . .n-fache der Größe \(y\).
  • Zwei zueinander direkt proportionale Größen sind quotientengleich. Den Quotienten \(\frac{y}{x}\) nennt man die Proportionalitätskonstante (bzw. den Proportionalitätsfaktor).
  • Sind zwei Größen zueinander direkt proportional, so ergibt ihre Darstellung in einem Diagramm eine Halbgerade durch den Ursprung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei zwei zueinander direkt proportionalen Größen gehört zum Doppelten, Dreifachen, . . . n-fachen der Größe \(x\) das Doppelte, Dreifache, . . .n-fache der Größe \(y\).
  • Zwei zueinander direkt proportionale Größen sind quotientengleich. Den Quotienten \(\frac{y}{x}\) nennt man die Proportionalitätskonstante (bzw. den Proportionalitätsfaktor).
  • Sind zwei Größen zueinander direkt proportional, so ergibt ihre Darstellung in einem Diagramm eine Halbgerade durch den Ursprung.

Zum Artikel Zu den Aufgaben

Größen, Basisgrößen und abgeleitete Größen

Grundwissen

  • Physikalische Größen bestehen immer aus einem Formelzeichen, einer Maßzahl und einer Maßeinheit. Beispiel: \(l=5{,}0\,\rm{m}\)
  • Es gibt sieben Basisgrößen über die alle anderen Größen definiert werden: Zeit, Länge, Masse, Stromstärke, Temperatur, Stoffmenge und Lichtstärke.
  • Die Einheit einer abgeleiteten Größe ergibt sich aus Rechnung mit den Einheiten der zugrundeliegenden Größen, z.B. beim Flächeninhalt: \(\left[ A \right] = \left[ l \right] \cdot \left[ b \right] = 1{\rm{m}} \cdot {\rm{m}} = 1{{\rm{m}}^{\rm{2}}}\)

Zum Artikel
Grundwissen

  • Physikalische Größen bestehen immer aus einem Formelzeichen, einer Maßzahl und einer Maßeinheit. Beispiel: \(l=5{,}0\,\rm{m}\)
  • Es gibt sieben Basisgrößen über die alle anderen Größen definiert werden: Zeit, Länge, Masse, Stromstärke, Temperatur, Stoffmenge und Lichtstärke.
  • Die Einheit einer abgeleiteten Größe ergibt sich aus Rechnung mit den Einheiten der zugrundeliegenden Größen, z.B. beim Flächeninhalt: \(\left[ A \right] = \left[ l \right] \cdot \left[ b \right] = 1{\rm{m}} \cdot {\rm{m}} = 1{{\rm{m}}^{\rm{2}}}\)

Zum Artikel Zu den Aufgaben

Genauigkeitsangaben und gültige Ziffern

Grundwissen

  • (Gemessene) physikalische Größen sind in der Regel mit Unsicherheit verbunden.
  • Die Zahl der gültigen Ziffern ergibt sich durch Zählung aller Stellen ab der ersten von Null verschiedenen Ziffer nach rechts.
  • Die Größe mit den wenigsten gültigen Ziffern bestimmt mit ihrer Anzahl an gültigen Ziffern auch die Anzahl der gültigen Ziffern bei der Berechnung eines Produktes oder Quotienten aus mehreren Größen.
  • Manchmal muss du Zehnerpotenzen verwenden, um die Anzahl der gültigen Ziffern korrekt anzugeben.

Zum Artikel
Grundwissen

  • (Gemessene) physikalische Größen sind in der Regel mit Unsicherheit verbunden.
  • Die Zahl der gültigen Ziffern ergibt sich durch Zählung aller Stellen ab der ersten von Null verschiedenen Ziffer nach rechts.
  • Die Größe mit den wenigsten gültigen Ziffern bestimmt mit ihrer Anzahl an gültigen Ziffern auch die Anzahl der gültigen Ziffern bei der Berechnung eines Produktes oder Quotienten aus mehreren Größen.
  • Manchmal muss du Zehnerpotenzen verwenden, um die Anzahl der gültigen Ziffern korrekt anzugeben.

Zum Artikel Zu den Aufgaben

Umgang mit dem Taschenrechner

Grundwissen
Grundwissen

Modell der Elementarmagnete

Grundwissen

  • Modellhaft können wir ein Magneten immer weiter in Magnete zerteilen, bis wir kleinste, unteilbare Elementarmagnete haben. Auch diese haben jeweils Nord- und Südpol.
  • Mit Hilfe des Modells der Elementarmagnete kannst du viele Phänomene erklären: das Magnetisieren von Eisen, das  Entmagnetisieren durch Erhitzen und das Entmagnetisieren durch Erschütterung.

Zum Artikel
Grundwissen

  • Modellhaft können wir ein Magneten immer weiter in Magnete zerteilen, bis wir kleinste, unteilbare Elementarmagnete haben. Auch diese haben jeweils Nord- und Südpol.
  • Mit Hilfe des Modells der Elementarmagnete kannst du viele Phänomene erklären: das Magnetisieren von Eisen, das  Entmagnetisieren durch Erhitzen und das Entmagnetisieren durch Erschütterung.

Zum Artikel Zu den Aufgaben

Gesamtkraft mehrerer Kräfte

Grundwissen

  • Wenn zwei Kräfte an einem Punkt angreifen, dann kann man zeichnerisch die sogenannte Gesamtkraft \(\vec F_{\rm{res}}\) bestimmen. Diese Gesamtkraft hat die gleiche Wirkung auf den Körper hat wie die beiden Einzelkräfte zusammen. 
  • Der zweite Kraftvektor wird so parallel verschoben, dass sein Fußpunkt an der Spitze des ersten Kraftvektors zu liegen kommt.
  • Der Vektor der Gesamtkraft beginnt beim Fußpunkt des ersten Kraftvektors und endet an der Spitze des zweiten Kraftvektors.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn zwei Kräfte an einem Punkt angreifen, dann kann man zeichnerisch die sogenannte Gesamtkraft \(\vec F_{\rm{res}}\) bestimmen. Diese Gesamtkraft hat die gleiche Wirkung auf den Körper hat wie die beiden Einzelkräfte zusammen. 
  • Der zweite Kraftvektor wird so parallel verschoben, dass sein Fußpunkt an der Spitze des ersten Kraftvektors zu liegen kommt.
  • Der Vektor der Gesamtkraft beginnt beim Fußpunkt des ersten Kraftvektors und endet an der Spitze des zweiten Kraftvektors.

Zum Artikel Zu den Aufgaben

Zerlegung einer Kraft in zwei Komponenten

Grundwissen

  • Zur eindeutigen Bestimmung des Kräfteparallelogramms müssen z.B. die resultierende Kraft und die Richtungen beider Teilkräfte bekannt sein.
  • Weg 1: Zeichnen zweier Geraden, die zu den vorgegebenen Richtungen parallel sind und durch die Pfeilspitze des gegebenen Kraftvektors gehen.
  • Weg 2: Parallelverschiebung eines Kraftvektors entlang des anderen Kraftvektors.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zur eindeutigen Bestimmung des Kräfteparallelogramms müssen z.B. die resultierende Kraft und die Richtungen beider Teilkräfte bekannt sein.
  • Weg 1: Zeichnen zweier Geraden, die zu den vorgegebenen Richtungen parallel sind und durch die Pfeilspitze des gegebenen Kraftvektors gehen.
  • Weg 2: Parallelverschiebung eines Kraftvektors entlang des anderen Kraftvektors.

Zum Artikel Zu den Aufgaben

Seil und Rolle

Grundwissen

  • An einer Rolle herrscht Kräftegleichgewicht, wenn die beiden Seilkräfte \(F\) links und rechts gleich groß sind und die den Seilkräften entgegengerichtete Kraft auf die Rollenachse \(2\cdot F\) beträgt.
  • Durch den Einsatz einer losen Rolle halbiert sich die notwendige Zugkraft \(F\) und eine Last mit der Gewichtskraft \(F_g\) anzuheben, dafür muss du das Seil doppelt so lange ziehen.
  • Du kannst lose und feste Rollen zu einem Flaschenzug kombinieren.

Zum Artikel
Grundwissen

  • An einer Rolle herrscht Kräftegleichgewicht, wenn die beiden Seilkräfte \(F\) links und rechts gleich groß sind und die den Seilkräften entgegengerichtete Kraft auf die Rollenachse \(2\cdot F\) beträgt.
  • Durch den Einsatz einer losen Rolle halbiert sich die notwendige Zugkraft \(F\) und eine Last mit der Gewichtskraft \(F_g\) anzuheben, dafür muss du das Seil doppelt so lange ziehen.
  • Du kannst lose und feste Rollen zu einem Flaschenzug kombinieren.

Zum Artikel Zu den Aufgaben

Hebel

Grundwissen

  • Als Hebel bezeichnet man einen starren Körper, der um eine feste Drehachse gedreht werden kann, z.B. eine Wippe. 
  • Ein zweiseitiger Hebel ist im Gleichgewicht, wenn die Produkte aus Kraft \(F\) und Hebelarm \(a\) auf beiden Seiten der Drehachse gleich groß ist: \(F_{\rm{l}}\cdot a_{\rm{l}}=F_{\rm{r}}\cdot a_{\rm{r}}\)
  • Allgemein ist der Hebelarm \(a\) bestimmt durch den Abstand zwischen Drehachse \(\rm{D}\) und der Wirkungslinie der Kraft \(F\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Hebel bezeichnet man einen starren Körper, der um eine feste Drehachse gedreht werden kann, z.B. eine Wippe. 
  • Ein zweiseitiger Hebel ist im Gleichgewicht, wenn die Produkte aus Kraft \(F\) und Hebelarm \(a\) auf beiden Seiten der Drehachse gleich groß ist: \(F_{\rm{l}}\cdot a_{\rm{l}}=F_{\rm{r}}\cdot a_{\rm{r}}\)
  • Allgemein ist der Hebelarm \(a\) bestimmt durch den Abstand zwischen Drehachse \(\rm{D}\) und der Wirkungslinie der Kraft \(F\).

Zum Artikel Zu den Aufgaben

Energieformen

Grundwissen

  • Energie kann in unterschiedlichen Formen vorliegen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Energie kann in unterschiedlichen Formen vorliegen.

Zum Artikel Zu den Aufgaben

Grundbegriffe zu Periodischen Bewegungen und Schwingungen

Grundwissen

  • Bei einer periodischen Bewegung hat ein Körper nach einer Periodendauer \(T\) wieder den gleichen Bewegungszustand.
  • Für die Frequenz einer periodischen Bewegung gilt \(f=\frac{1}{T}\).
  • Die Amplitude einer Schwingung ist der Betrag des Maximalwerts der Auslenkung aus der Ruhelage.

Zum Artikel
Grundwissen

  • Bei einer periodischen Bewegung hat ein Körper nach einer Periodendauer \(T\) wieder den gleichen Bewegungszustand.
  • Für die Frequenz einer periodischen Bewegung gilt \(f=\frac{1}{T}\).
  • Die Amplitude einer Schwingung ist der Betrag des Maximalwerts der Auslenkung aus der Ruhelage.

Zum Artikel Zu den Aufgaben

Ausbreitung Elektromagnetischer Wellen

Grundwissen

  • Man unterscheidet bei der Ausbreitung elektromagnetischer Wellen zwischen Nahfeld und Fernfeld.
  • Das Nahfeld ist in unmittelbarer Nähe zur Quelle/Antenne.
  • Im Fernfeld schwingen elektrisches und magnetisches Feld in Phase.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man unterscheidet bei der Ausbreitung elektromagnetischer Wellen zwischen Nahfeld und Fernfeld.
  • Das Nahfeld ist in unmittelbarer Nähe zur Quelle/Antenne.
  • Im Fernfeld schwingen elektrisches und magnetisches Feld in Phase.

Zum Artikel Zu den Aufgaben

Elektrische Energie im geladenen Kondensator

Grundwissen

  • Kondensatoren sind in der Lage elektrische Energie zu speichern.
  • Ist ein Kondensator der Kapazität \(C\) mit einer Spannung \(U\) aufgeladen und trägt die Ladung \(Q\), dann gilt für die im Kondensator gespeicherte elektrische Energie \({E_{{\rm{el}}}} = \frac{1}{2} \cdot Q \cdot U = \frac{1}{2} \cdot C \cdot {U^2} = \frac{1}{2} \cdot \frac{{{Q^2}}}{C}\) 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Kondensatoren sind in der Lage elektrische Energie zu speichern.
  • Ist ein Kondensator der Kapazität \(C\) mit einer Spannung \(U\) aufgeladen und trägt die Ladung \(Q\), dann gilt für die im Kondensator gespeicherte elektrische Energie \({E_{{\rm{el}}}} = \frac{1}{2} \cdot Q \cdot U = \frac{1}{2} \cdot C \cdot {U^2} = \frac{1}{2} \cdot \frac{{{Q^2}}}{C}\) 

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung einer Welle

Grundwissen

  • Zentrale Größen zur Beschreibung einer Welle sind ihre Amplitude \(\hat{y}\), ihre Schwingungsdauer \(T\), ihre Frequenz \(f\) und ihre Phasen- bzw. Ausbreitungsgeschwindigkeit \(c\).
  • Dabei gilt der Zusammenhang \(\lambda  = c \cdot T = \frac{c}{f}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zentrale Größen zur Beschreibung einer Welle sind ihre Amplitude \(\hat{y}\), ihre Schwingungsdauer \(T\), ihre Frequenz \(f\) und ihre Phasen- bzw. Ausbreitungsgeschwindigkeit \(c\).
  • Dabei gilt der Zusammenhang \(\lambda  = c \cdot T = \frac{c}{f}\)

Zum Artikel Zu den Aufgaben

Schweredruck

Grundwissen

  • Als Schweredruck bezeichnet man einen Druck, den ein Körper nur auf Grund der Gewichtskraft der über ihm liegenden Flüssigkeits- oder Gassäule erfährt.
  • Für den Schweredruck gilt \({p = \rho \cdot g \cdot h}\).
  • Der Schweredruck ist unabhängig von Form und Querschnittsfläche der Flüssigkeitssäule.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Schweredruck bezeichnet man einen Druck, den ein Körper nur auf Grund der Gewichtskraft der über ihm liegenden Flüssigkeits- oder Gassäule erfährt.
  • Für den Schweredruck gilt \({p = \rho \cdot g \cdot h}\).
  • Der Schweredruck ist unabhängig von Form und Querschnittsfläche der Flüssigkeitssäule.

Zum Artikel Zu den Aufgaben

Gesetz von HOOKE

Grundwissen

  • Das HOOKEsche Gesetz beschreibt die Wirkung einer Kraft auf elastische Körper wie Federn.
  • Die Federkonstante (Federhärte) wird mit \(D\) bezeichnet.
  • Es gilt \(F=D\cdot \Delta x\) mit der Längenänderung der \(\Delta x\) der Feder.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das HOOKEsche Gesetz beschreibt die Wirkung einer Kraft auf elastische Körper wie Federn.
  • Die Federkonstante (Federhärte) wird mit \(D\) bezeichnet.
  • Es gilt \(F=D\cdot \Delta x\) mit der Längenänderung der \(\Delta x\) der Feder.

Zum Artikel Zu den Aufgaben

Umrechnen von Einheiten der Kraft

Grundwissen

  • Physikalische Größen bestehen immer aus Zahlenwert (Maßzahl) und Einheit.
  • Verschiedene Einheiten der Kraft kannst du ineinander umrechnen.

Zum Artikel
Grundwissen

  • Physikalische Größen bestehen immer aus Zahlenwert (Maßzahl) und Einheit.
  • Verschiedene Einheiten der Kraft kannst du ineinander umrechnen.

Zum Artikel Zu den Aufgaben

Umstellen einer Gleichung

Grundwissen

  • Formeln musst du manchmal umstellen, um die gesuchte Größe berechnen zu können.
  • Hilfreich als Merkregel ist dabei das entsprechende Größendreieck.

Zum Artikel
Grundwissen

  • Formeln musst du manchmal umstellen, um die gesuchte Größe berechnen zu können.
  • Hilfreich als Merkregel ist dabei das entsprechende Größendreieck.

Zum Artikel Zu den Aufgaben

Impuls und Impulserhaltungssatz

Grundwissen

  • Der Impuls ist das Produkt von Masse und Geschwindigkeit eines Körpers: \(\vec{p}=m\cdot\vec{v}\).
  • In einem abgeschlossenen System ist der Impuls erhalten (Impulserhaltungssatz).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Impuls ist das Produkt von Masse und Geschwindigkeit eines Körpers: \(\vec{p}=m\cdot\vec{v}\).
  • In einem abgeschlossenen System ist der Impuls erhalten (Impulserhaltungssatz).

Zum Artikel Zu den Aufgaben

Kraftwandler

Grundwissen

  • Kraftwandler ändern den Angriffspunkt, die Richtung, den Betrag oder mehrere dieser Eigenschaften einer Kraft.
  • typische Beispiele für Kraftwandler sind Seil, Hebel, Rolle und Flaschenzug.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Kraftwandler ändern den Angriffspunkt, die Richtung, den Betrag oder mehrere dieser Eigenschaften einer Kraft.
  • typische Beispiele für Kraftwandler sind Seil, Hebel, Rolle und Flaschenzug.

Zum Artikel Zu den Aufgaben

Kräfteaddition

Grundwissen

  • Wirken zwei oder mehr Kräfte auf einen Körper, so kannst du diese durch eine einzige resultierende Kraft \(\vec{F_{\rm{r}}}\) ersetzen.
  • Die Richtung und den Betrag (die Stärke) der resultierenden Kraft kannst du grafisch ermitteln.
  • Zeigen die angreifenden Kräfte in unterschiedliche Richtungen, so addierst du diese mittels Kräfteparallelogramm oder Kräftedreieck.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wirken zwei oder mehr Kräfte auf einen Körper, so kannst du diese durch eine einzige resultierende Kraft \(\vec{F_{\rm{r}}}\) ersetzen.
  • Die Richtung und den Betrag (die Stärke) der resultierenden Kraft kannst du grafisch ermitteln.
  • Zeigen die angreifenden Kräfte in unterschiedliche Richtungen, so addierst du diese mittels Kräfteparallelogramm oder Kräftedreieck.

Zum Artikel Zu den Aufgaben