Direkt zum Inhalt
Suchergebnisse 31 - 60 von 75

Vielfachspalt und Gitter

Grundwissen

  • Durch Verwendung mehrerer Spalte werden die Interferenzmaxima intensiver und schärfer.
  • Aus dem Abstand zwischen den Hauptmaxima kann bei bekanntem Spaltabstand sehr präzise die Wellenlänge des Lichtes berechnet werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Durch Verwendung mehrerer Spalte werden die Interferenzmaxima intensiver und schärfer.
  • Aus dem Abstand zwischen den Hauptmaxima kann bei bekanntem Spaltabstand sehr präzise die Wellenlänge des Lichtes berechnet werden.

Zum Artikel Zu den Aufgaben

Einzelspalt

Grundwissen

  • Auch am Einzelspalt treten Interferenzerscheinungen auf.
  • Die Lage der Maxima und Minima wird von der Spaltbreite \(B\) und der Wellenlänge \(\lambda\) beeinflusst.
  • Die Bedingungen für konstruktive und destruktive Interferenz unterscheiden sich von denen beim Doppelspalt bzw. Gitter.

Zum Artikel
Grundwissen

  • Auch am Einzelspalt treten Interferenzerscheinungen auf.
  • Die Lage der Maxima und Minima wird von der Spaltbreite \(B\) und der Wellenlänge \(\lambda\) beeinflusst.
  • Die Bedingungen für konstruktive und destruktive Interferenz unterscheiden sich von denen beim Doppelspalt bzw. Gitter.

Zum Artikel Zu den Aufgaben

Charakteristische Strahlung

Grundwissen

  • Im kontinuierlichen RÖNTGEN-Spektrum können charakteristische Linien identifiziert werden, die sog. charakteristische Strahlung.
  • Ursache sind Übergänge von Elektronen zwischen spezifischen energetischen Elektronenschalen (K-Schale, L-Schale, M-Schale,...).
  • Die Kα-Linie ist in charakteristischen Spektren besonders stark ausgeprägt und die Lage der Linie im kontinuierlichen Spektrum stoffspezifisch.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im kontinuierlichen RÖNTGEN-Spektrum können charakteristische Linien identifiziert werden, die sog. charakteristische Strahlung.
  • Ursache sind Übergänge von Elektronen zwischen spezifischen energetischen Elektronenschalen (K-Schale, L-Schale, M-Schale,...).
  • Die Kα-Linie ist in charakteristischen Spektren besonders stark ausgeprägt und die Lage der Linie im kontinuierlichen Spektrum stoffspezifisch.

Zum Artikel Zu den Aufgaben

Energiezustände von Atomen

Grundwissen

  • Atome können nur Zustände mit ganz bestimmten, diskreten Energiezuständen annehmen.
  • Entsprechend haben die von einem Atom ausgesendeten Photonen jeweils genau die Energie, die zwischen zwei solchen diskreten Energieniveaus des Atoms liegt.
  • Um ein Atom anzuregen, benötigt es ebenfalls exakt einen solchen "passenden" Energiebetrag.
  • Das Auftreten von Linienspektren kann durch diskrete Energieniveaus erklärt werden.

Zum Artikel
Grundwissen

  • Atome können nur Zustände mit ganz bestimmten, diskreten Energiezuständen annehmen.
  • Entsprechend haben die von einem Atom ausgesendeten Photonen jeweils genau die Energie, die zwischen zwei solchen diskreten Energieniveaus des Atoms liegt.
  • Um ein Atom anzuregen, benötigt es ebenfalls exakt einen solchen "passenden" Energiebetrag.
  • Das Auftreten von Linienspektren kann durch diskrete Energieniveaus erklärt werden.

Zum Artikel Zu den Aufgaben

Jahreszeiten

Grundwissen

  • Die Neigung der Erdachse sorgt für die Jahreszeiten
  • Im Sommer fällt das Sonnenlicht mittags steiler auf die Erdoberfläche, im Winter flacher
  • Einstrahlwinkel und Tageslängen beeinflussen die Erwärmung

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Neigung der Erdachse sorgt für die Jahreszeiten
  • Im Sommer fällt das Sonnenlicht mittags steiler auf die Erdoberfläche, im Winter flacher
  • Einstrahlwinkel und Tageslängen beeinflussen die Erwärmung

Zum Artikel Zu den Aufgaben

Erstes KEPLERsches Gesetz

Grundwissen

  • Die Planeten bewegen sich auf elliptischen Bahnen, in deren einem Brennpunkt die Sonne steht.
  • Den Bahnpunkt mit dem geringsten Abstand zur Sonne bezeichnet man als Perihel, den Bahnpunkt mit dem größten Abstand zur Sonne als Aphel.
  • Die Erdbahn hat nur eine sehr geringe Exzentrizität.

Zum Artikel
Grundwissen

  • Die Planeten bewegen sich auf elliptischen Bahnen, in deren einem Brennpunkt die Sonne steht.
  • Den Bahnpunkt mit dem geringsten Abstand zur Sonne bezeichnet man als Perihel, den Bahnpunkt mit dem größten Abstand zur Sonne als Aphel.
  • Die Erdbahn hat nur eine sehr geringe Exzentrizität.

Zum Artikel Zu den Aufgaben

Drittes KEPLERsches Gesetz

Grundwissen

  • Die Quadrate (zweite Potenzen) der Umlaufzeiten zweier Planeten um das gleiche Zentralgestirn verhalten sich wie die Kuben (dritte Potenzen) der großen Bahnhalbachsen.
  • Für alle Planeten, die um das gleiche Zentralgestirn kreisen, haben die Quotienten aus dem Quadrat der Umlaufzeit und der dritten Potenz der großen Bahnhalbachse den selben Wert \(C\). Dabei muss die Masse des Zentralgestirns deutlich größer sein, als die Masse der umlaufenden Körper.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Quadrate (zweite Potenzen) der Umlaufzeiten zweier Planeten um das gleiche Zentralgestirn verhalten sich wie die Kuben (dritte Potenzen) der großen Bahnhalbachsen.
  • Für alle Planeten, die um das gleiche Zentralgestirn kreisen, haben die Quotienten aus dem Quadrat der Umlaufzeit und der dritten Potenz der großen Bahnhalbachse den selben Wert \(C\). Dabei muss die Masse des Zentralgestirns deutlich größer sein, als die Masse der umlaufenden Körper.

Zum Artikel Zu den Aufgaben

Zweites KEPLERsches Gesetz

Grundwissen

  • Ein von der Sonne zum Planeten gezogener Fahrstrahl überstreicht in gleichen Zeiten gleich große Flächen.
  • Die Geschwindigkeit eines Planeten ändert sich auf seiner Bahn um die Sonne: im Perihel ist er am schnellsten, im Aphel am langsamsten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein von der Sonne zum Planeten gezogener Fahrstrahl überstreicht in gleichen Zeiten gleich große Flächen.
  • Die Geschwindigkeit eines Planeten ändert sich auf seiner Bahn um die Sonne: im Perihel ist er am schnellsten, im Aphel am langsamsten.

Zum Artikel Zu den Aufgaben

Klassische Röntgenaufnahmen

Grundwissen

  • Röntgenstrahlen bzw. Röntgenbilder sind in der Medizin wichtige Diagnosewerkzeuge.
  • Dabei wird ausgenutzt, dass unterschiedliches Gewebe und Knochen die Röntgenstrahlung unterschiedlich stark absorbieren (schwächen).
  • Moderne digitale Röntgengeräte senken die durch eine Röntgenaufnahme verursachte Strahlenbelastung stark.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Röntgenstrahlen bzw. Röntgenbilder sind in der Medizin wichtige Diagnosewerkzeuge.
  • Dabei wird ausgenutzt, dass unterschiedliches Gewebe und Knochen die Röntgenstrahlung unterschiedlich stark absorbieren (schwächen).
  • Moderne digitale Röntgengeräte senken die durch eine Röntgenaufnahme verursachte Strahlenbelastung stark.

Zum Artikel Zu den Aufgaben

Jährliche Sternbewegung

Grundwissen

  • Nahe Fixsterne scheinen im Laufe eines Jahres bei der Beobachtung von der Erde aus vor dem weit entfernten Sternenhintergrund etwas zu wandern.
  • Ursache dafür ist, dass sich die Erde im Laufe eines Jahres einmal um die Sonne bewegt.
  • Mithilfe der beobachteten jährlichen Parallaxe \(p\) kann die Entfernung relativ naher Sterne (mit einfachen Teleskopen vom Erdboden bis ca. \(100 \rm{pc} = 326\,\rm{Lj}\)) berechnet werden. Mit speziellen Raumsonden (z.B. Gaia) erhöht sich die Reichweite erheblich.

Zum Artikel
Grundwissen

  • Nahe Fixsterne scheinen im Laufe eines Jahres bei der Beobachtung von der Erde aus vor dem weit entfernten Sternenhintergrund etwas zu wandern.
  • Ursache dafür ist, dass sich die Erde im Laufe eines Jahres einmal um die Sonne bewegt.
  • Mithilfe der beobachteten jährlichen Parallaxe \(p\) kann die Entfernung relativ naher Sterne (mit einfachen Teleskopen vom Erdboden bis ca. \(100 \rm{pc} = 326\,\rm{Lj}\)) berechnet werden. Mit speziellen Raumsonden (z.B. Gaia) erhöht sich die Reichweite erheblich.

Zum Artikel Zu den Aufgaben

Entwicklung der Sonne

Grundwissen

  • Aktuell befindet sich die Sonne im Hauptreihenstadium und ist ein Gelber Zwerg.
  • Durch die Ständige Kernfusion im Inneren wandert die Sonne entlang der Hauptreihe im Hertzsprung-Russel-Diagramm.
  • In etwa 6 Milliarden Jahren wird die Sonne dann zu einem Roten Riesen bis sie schließlich als Weißer Zwerg endet.

Zum Artikel
Grundwissen

  • Aktuell befindet sich die Sonne im Hauptreihenstadium und ist ein Gelber Zwerg.
  • Durch die Ständige Kernfusion im Inneren wandert die Sonne entlang der Hauptreihe im Hertzsprung-Russel-Diagramm.
  • In etwa 6 Milliarden Jahren wird die Sonne dann zu einem Roten Riesen bis sie schließlich als Weißer Zwerg endet.

Zum Artikel Zu den Aufgaben

Ausdehnung des Kosmos

Grundwissen

  • Das Universum als Ganzes dehnt sich gegenwärtig aus.
  • Dabei besteht ein Zusammenhang zwischen der Entfernung der Galaxien voneinander und ihrer "Fluchtgeschwindigkeit" voneinander.
  • Bei der Ausdehnung gibt es keinen ausgezeichneten Punkt, keinen Mittelpunkt.

Zum Artikel
Grundwissen

  • Das Universum als Ganzes dehnt sich gegenwärtig aus.
  • Dabei besteht ein Zusammenhang zwischen der Entfernung der Galaxien voneinander und ihrer "Fluchtgeschwindigkeit" voneinander.
  • Bei der Ausdehnung gibt es keinen ausgezeichneten Punkt, keinen Mittelpunkt.

Zum Artikel Zu den Aufgaben

Wahrscheinlichkeitsverteilungen beim H-Atom

Grundwissen

  • Die Wahrscheinlichkeitsverteilung kann mit verschiedenen Darstellungsformen visualisiert werden.

Zum Artikel
Grundwissen

  • Die Wahrscheinlichkeitsverteilung kann mit verschiedenen Darstellungsformen visualisiert werden.

Zum Artikel Zu den Aufgaben

Bestandteile eines Lasers

Grundwissen

  • Laser habe drei zentrale Bestandteile: das Lasermedium, die Pumpe und den Resonator.
  • Die Pumpe bringt Energie ins System und sorgt für eine Besetzungsinversion im Lasermedium.
  • Der Resonator, eine Anordnung aus zwei parallelen Spiegeln, verstärkt den Laserstrahl und richtet ihn aus.

Zum Artikel
Grundwissen

  • Laser habe drei zentrale Bestandteile: das Lasermedium, die Pumpe und den Resonator.
  • Die Pumpe bringt Energie ins System und sorgt für eine Besetzungsinversion im Lasermedium.
  • Der Resonator, eine Anordnung aus zwei parallelen Spiegeln, verstärkt den Laserstrahl und richtet ihn aus.

Zum Artikel Zu den Aufgaben

Eigenschaften der Laserstrahlung

Grundwissen

  • Laserlicht ist monofrequent und linear polarisiert.
  • Laserlicht besitzt nur eine sehr geringe Divergenz, ein Laserbündel weitet sich also nur sehr wenig auf.
  • Mit Laserlicht können hohe Leistungsdichten im Fokus erreicht werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Laserlicht ist monofrequent und linear polarisiert.
  • Laserlicht besitzt nur eine sehr geringe Divergenz, ein Laserbündel weitet sich also nur sehr wenig auf.
  • Mit Laserlicht können hohe Leistungsdichten im Fokus erreicht werden.

Zum Artikel Zu den Aufgaben

Lasermedien

Grundwissen

  • In Lasermedien muss eine Besetzungsinversion erzeugt werden, dies ist bei Medien mit nur zwei Energiezuständen nicht möglich.
  • Lasermedien besitzen daher mehr als zwei Energiezustände.
  • Dabei ist ein angeregter Energiezustand, der nicht der höchste ist, metastabil, also langlebig. Eine Besetzungsinversion wird möglich.

Zum Artikel
Grundwissen

  • In Lasermedien muss eine Besetzungsinversion erzeugt werden, dies ist bei Medien mit nur zwei Energiezuständen nicht möglich.
  • Lasermedien besitzen daher mehr als zwei Energiezustände.
  • Dabei ist ein angeregter Energiezustand, der nicht der höchste ist, metastabil, also langlebig. Eine Besetzungsinversion wird möglich.

Zum Artikel Zu den Aufgaben

Was ist Bionik?

Grundwissen
Grundwissen

Der Lotuseffekt - selbstreinigende Oberfläche

Grundwissen
Grundwissen

Auftrieb

Grundwissen
Grundwissen

Flugfrüchte

Grundwissen
Grundwissen

Leichtbauweise

Grundwissen
Grundwissen

Additive Farbmischung

Grundwissen

  • Bei der additiven Farbmischung entstehen unterschiedliche Farbeindrücke dadurch, dass zu vorhandenem Licht das Licht weiterer Spektralfarben hinzugefügt wird.
  • In der Praxis mischt man nur Licht der drei Spektralfarben "Rot", "Grün" und "Blau". Man spricht dann vom RGB-Farbraum und nennt die Spektralfarben "Rot", "Grün" und "Blau" die Grund- oder Primärfarben der additiven Farbmischung.
  • Mischt man das Licht dieser drei Grundfarben passend zusammen, so erhält man fast alle möglichen Farbeindrücke und auch den Farbeindruck "weiß".

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei der additiven Farbmischung entstehen unterschiedliche Farbeindrücke dadurch, dass zu vorhandenem Licht das Licht weiterer Spektralfarben hinzugefügt wird.
  • In der Praxis mischt man nur Licht der drei Spektralfarben "Rot", "Grün" und "Blau". Man spricht dann vom RGB-Farbraum und nennt die Spektralfarben "Rot", "Grün" und "Blau" die Grund- oder Primärfarben der additiven Farbmischung.
  • Mischt man das Licht dieser drei Grundfarben passend zusammen, so erhält man fast alle möglichen Farbeindrücke und auch den Farbeindruck "weiß".

Zum Artikel Zu den Aufgaben

Subtraktive Farbmischung

Grundwissen

  • Bei der subtraktiven Farbmischung entstehen unterschiedliche Farbeindrücke dadurch, dass aus vorhandenem Licht das Licht einzelner Spektralfarben herausgefiltert wird.
  • In der Praxis filtert man aus Licht, in dem alle Spektralfarben enthalten sind, getrennt voneinander Licht des "roten", des "grünen" und des "blauen" Spektralbereichs heraus. Die entsprechenden Farbfilter erscheinen uns in den Farben "Cyan", "Magenta" und "Gelb" ("Yellow"). Man spricht deshalb vom CMY-Farbraum.
  • Filtert man aus Sonnenlicht das Licht des "roten", des "grünen" und des "blauen" Spektralbereichs in unterschiedlichen Kombinationen und Filterstärken heraus, so erhält man fast alle möglichen Farbeindrücke bis hin zum Farbeindruck "schwarz".

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei der subtraktiven Farbmischung entstehen unterschiedliche Farbeindrücke dadurch, dass aus vorhandenem Licht das Licht einzelner Spektralfarben herausgefiltert wird.
  • In der Praxis filtert man aus Licht, in dem alle Spektralfarben enthalten sind, getrennt voneinander Licht des "roten", des "grünen" und des "blauen" Spektralbereichs heraus. Die entsprechenden Farbfilter erscheinen uns in den Farben "Cyan", "Magenta" und "Gelb" ("Yellow"). Man spricht deshalb vom CMY-Farbraum.
  • Filtert man aus Sonnenlicht das Licht des "roten", des "grünen" und des "blauen" Spektralbereichs in unterschiedlichen Kombinationen und Filterstärken heraus, so erhält man fast alle möglichen Farbeindrücke bis hin zum Farbeindruck "schwarz".

Zum Artikel Zu den Aufgaben

Spektralfarben

Grundwissen

  • Weißes Licht lässt sich mithilfe eines Prismas in seine Spektralfarben zerlegen.
  • Als Spektralfarben werden meist die Regenbogenfarben Rot, Orange, Gelb, Grün, Blau, Indigo und Violett bezeichnet.
  • Spektralfarben lassen sich nicht weiter in andere Farben zerlegen. Es sind reine Farben.
  • Licht enthält oft auch nicht sichtbare Anteile - zum einen infrarotes Licht und zum anderen ultraviolettes Licht.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Weißes Licht lässt sich mithilfe eines Prismas in seine Spektralfarben zerlegen.
  • Als Spektralfarben werden meist die Regenbogenfarben Rot, Orange, Gelb, Grün, Blau, Indigo und Violett bezeichnet.
  • Spektralfarben lassen sich nicht weiter in andere Farben zerlegen. Es sind reine Farben.
  • Licht enthält oft auch nicht sichtbare Anteile - zum einen infrarotes Licht und zum anderen ultraviolettes Licht.

Zum Artikel Zu den Aufgaben

Lochkamera

Grundwissen

  • Das Bild bei einer Lochkamera steht auf dem Kopf und ist seitenverkehrt.
  • Wenn man das Loch vergrößert, wird das Bild zwar heller, dafür aber unschärfer.
  • Bildgröße \(B\) und Gegenstandsgröße \(G\) sowie Bildweite \(b\) und Gegenstandsweite \(g\) sind quotientengleich: \(\frac{B}{G}=\frac{b}{g}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Bild bei einer Lochkamera steht auf dem Kopf und ist seitenverkehrt.
  • Wenn man das Loch vergrößert, wird das Bild zwar heller, dafür aber unschärfer.
  • Bildgröße \(B\) und Gegenstandsgröße \(G\) sowie Bildweite \(b\) und Gegenstandsweite \(g\) sind quotientengleich: \(\frac{B}{G}=\frac{b}{g}\).

Zum Artikel Zu den Aufgaben

Lichtgeschwindigkeit

Grundwissen

  • Die Ausbreitungsgeschwindigkeit von Licht nennt man Lichtgeschwindigkeit.
  • Die Lichtgeschwindigkeit im luftleeren Raum (Vakuum) beträgt \(299.792.458\,\rm{\frac{m}{s}}\). Das sind etwa \(300.000\,\rm{\frac{km}{s}}\)
  • In Formeln wird diese Lichtgeschwindigkeit häufig mit \(c\) bezeichnet.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Ausbreitungsgeschwindigkeit von Licht nennt man Lichtgeschwindigkeit.
  • Die Lichtgeschwindigkeit im luftleeren Raum (Vakuum) beträgt \(299.792.458\,\rm{\frac{m}{s}}\). Das sind etwa \(300.000\,\rm{\frac{km}{s}}\)
  • In Formeln wird diese Lichtgeschwindigkeit häufig mit \(c\) bezeichnet.

Zum Artikel Zu den Aufgaben

Bildentstehung bei Linsenabbildungen

Grundwissen

  • Von Konvexlinsen erzeugte reelle Bilder (Voraussetzung \(g>f\)) sind höhen- und seitenverkehrt.
  • Bilder entstehen dabei punktweise! Bilder wandern niemals als Ganzes.

Zum Artikel
Grundwissen

  • Von Konvexlinsen erzeugte reelle Bilder (Voraussetzung \(g>f\)) sind höhen- und seitenverkehrt.
  • Bilder entstehen dabei punktweise! Bilder wandern niemals als Ganzes.

Zum Artikel Zu den Aufgaben

Totalreflexion

Grundwissen

  • Beim Übergang zwischen zwei Medien wird ein Teil des Lichtes reflektiert.
  • Nur beim Übergang vom optisch dichteren zum optisch dünneren Medium kann Totalreflexion auftreten.
  • Den Grenzwinkel der Totalreflexion \(\alpha_{\rm{Gr}}\) hängt von den beiden Materialien ab.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Übergang zwischen zwei Medien wird ein Teil des Lichtes reflektiert.
  • Nur beim Übergang vom optisch dichteren zum optisch dünneren Medium kann Totalreflexion auftreten.
  • Den Grenzwinkel der Totalreflexion \(\alpha_{\rm{Gr}}\) hängt von den beiden Materialien ab.

Zum Artikel Zu den Aufgaben

Gesetz von MALUS

Grundwissen

  • Gesetz von MALUS: \(I=I_0\cdot \cos^2\left( \alpha \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Gesetz von MALUS: \(I=I_0\cdot \cos^2\left( \alpha \right)\)

Zum Artikel Zu den Aufgaben

Polarisation von Licht - Einführung

Grundwissen

  • Die Polarisation beschreibt die Schwingungsrichtung einer Transversalwelle.
  • Lineare Polarisationsfilter können nur von Licht einer bestimmten Schwingungsrichtung passiert werden.
  • Laserlicht und das Licht von Computerdisplays ist polarisiert.

Zum Artikel
Grundwissen

  • Die Polarisation beschreibt die Schwingungsrichtung einer Transversalwelle.
  • Lineare Polarisationsfilter können nur von Licht einer bestimmten Schwingungsrichtung passiert werden.
  • Laserlicht und das Licht von Computerdisplays ist polarisiert.

Zum Artikel Zu den Aufgaben