Direkt zum Inhalt
Suchergebnisse 151 - 180 von 308

Längenkontraktion

Grundwissen

  • Für bewegte Beobachter sind Strecken verkürzt.
  • Für die Längenkontraktion gilt: \(\Delta x' = \Delta x \cdot \sqrt{1 - \left(\frac{v}{c}\right)^2}\)
  • Die Längenkontraktion findet nur in Bewegungsrichtung statt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für bewegte Beobachter sind Strecken verkürzt.
  • Für die Längenkontraktion gilt: \(\Delta x' = \Delta x \cdot \sqrt{1 - \left(\frac{v}{c}\right)^2}\)
  • Die Längenkontraktion findet nur in Bewegungsrichtung statt.

Zum Artikel Zu den Aufgaben

Kraft auf stromführende Leiter im Magnetfeld

Grundwissen

  • Auf stromdurchflossene Leiter im Magnetfeld wirkt im Allgemeinen eine Kraft.
  • Die Kraftrichtung kannst du mit der Drei-Finger-Regel der rechten Hand bestimmen.
  • Wenn Stromrichtung und Magnetfeldrichtung parallel bzw. antiparallel verlaufen, wirkt keine Kraft.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auf stromdurchflossene Leiter im Magnetfeld wirkt im Allgemeinen eine Kraft.
  • Die Kraftrichtung kannst du mit der Drei-Finger-Regel der rechten Hand bestimmen.
  • Wenn Stromrichtung und Magnetfeldrichtung parallel bzw. antiparallel verlaufen, wirkt keine Kraft.

Zum Artikel Zu den Aufgaben

Feldlinien

Grundwissen

  • Elektrische Feldlinien veranschaulichen modellhaft die Struktur des E-Feldes.
  • Je dichter die Feldlinien, desto stärker das E-Feld.
  • Elektrische Feldlinien zeigen immer in die Richtung der Kraft auf einen positiv geladenen Probekörper.

Zum Artikel
Grundwissen

  • Elektrische Feldlinien veranschaulichen modellhaft die Struktur des E-Feldes.
  • Je dichter die Feldlinien, desto stärker das E-Feld.
  • Elektrische Feldlinien zeigen immer in die Richtung der Kraft auf einen positiv geladenen Probekörper.

Zum Artikel Zu den Aufgaben

Ladung und Strom - Fortführung

Grundwissen

  • Die Fläche im Zeit-Stromstärke-Diagramm entspricht der geflossenen Ladungsmenge \(\Delta Q\).
  • Somit kann auch die geflossene Ladungsmenge bei variabler Stromstärke \(I\) ermittelt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Fläche im Zeit-Stromstärke-Diagramm entspricht der geflossenen Ladungsmenge \(\Delta Q\).
  • Somit kann auch die geflossene Ladungsmenge bei variabler Stromstärke \(I\) ermittelt werden.

Zum Artikel Zu den Aufgaben

Wechselstromwiderstände

Grundwissen

  • Der Wechselstromwiderstand eines Elementes ist der Quotient aus Effektivspannung und Effektivstromstärke: \(X=\frac{U_{\rm{eff}}}{I_{\rm{eff}}}\)
  • Man unterscheidet zwischen Wechselstromwiderständen von OHMschen Leitern \(X_R\), an kapazitiven Bauelementen (Kondensatoren) \(X_C\) und an induktiven Bauelementen (Spulen) \(X_L\).
  • Zusätzlich verursachen Kondensatoren und Spulen Phasenverschiebungen der über dem Bauelement abfallenden Spannung gegenüber der Stromstärke1.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Wechselstromwiderstand eines Elementes ist der Quotient aus Effektivspannung und Effektivstromstärke: \(X=\frac{U_{\rm{eff}}}{I_{\rm{eff}}}\)
  • Man unterscheidet zwischen Wechselstromwiderständen von OHMschen Leitern \(X_R\), an kapazitiven Bauelementen (Kondensatoren) \(X_C\) und an induktiven Bauelementen (Spulen) \(X_L\).
  • Zusätzlich verursachen Kondensatoren und Spulen Phasenverschiebungen der über dem Bauelement abfallenden Spannung gegenüber der Stromstärke1.

Zum Artikel Zu den Aufgaben

Zeigerdiagramme in der Wechselstromtechnik

Grundwissen

  • In der Wechselstromtechnik werden häufig Zeigerdiagramme zur Darstellung von Stromstärke und Spannung genutzt.
  • Dabei dreht sich ein Zeiger, dessen Länge der Amplitude (z.B. \(\hat I\)) entspricht, mit der  Winkelgeschwindigkeit \(\omega\) gegen den Uhrzeigersinn.
  • Der Momentanwert der jeweiligen Größe kann dann im Zeigerdiagramm an der vertikalen Achse abgelesen werden.

Zum Artikel
Grundwissen

  • In der Wechselstromtechnik werden häufig Zeigerdiagramme zur Darstellung von Stromstärke und Spannung genutzt.
  • Dabei dreht sich ein Zeiger, dessen Länge der Amplitude (z.B. \(\hat I\)) entspricht, mit der  Winkelgeschwindigkeit \(\omega\) gegen den Uhrzeigersinn.
  • Der Momentanwert der jeweiligen Größe kann dann im Zeigerdiagramm an der vertikalen Achse abgelesen werden.

Zum Artikel Zu den Aufgaben

Effektivwerte von Wechselstrom und -spannung

Grundwissen

  • Der Effektivwert der Spannung einer Wechselspannung bzw. der Stromstärke eines Wechselstroms ist diejenige zeitlich konstante Spannung bzw. Stromstärke, die in der gleichen Zeit die gleiche Energie liefert.
  • Der Effektivwert \(U_{\rm{eff}}\) einer sinusförmigen Wechselspannung mit dem Scheitelwert \(\hat U\) ist \(U_{\rm{eff}}=\frac{\hat U}{\sqrt{2}}\)
  • Der Effektivwert \(I_{\rm{eff}}\) eines sinusförmigen Wechselstroms mit dem Scheitelwert \(\hat I\) ist \(I_{\rm{eff}}=\frac{\hat I}{\sqrt{2}}\)

Zum Artikel
Grundwissen

  • Der Effektivwert der Spannung einer Wechselspannung bzw. der Stromstärke eines Wechselstroms ist diejenige zeitlich konstante Spannung bzw. Stromstärke, die in der gleichen Zeit die gleiche Energie liefert.
  • Der Effektivwert \(U_{\rm{eff}}\) einer sinusförmigen Wechselspannung mit dem Scheitelwert \(\hat U\) ist \(U_{\rm{eff}}=\frac{\hat U}{\sqrt{2}}\)
  • Der Effektivwert \(I_{\rm{eff}}\) eines sinusförmigen Wechselstroms mit dem Scheitelwert \(\hat I\) ist \(I_{\rm{eff}}=\frac{\hat I}{\sqrt{2}}\)

Zum Artikel Zu den Aufgaben

EINSTEINs Postulate

Grundwissen

  • Erstes Postulat (Relativitätsprinzip): Alle Inertialsysteme sind bezüglich aller physikalischen Gesetze gleichberechtigt.
  • Zweites Postulat (Konstanz der Lichtgeschwindigkeit): Die Vakuumlichtgeschwindigkeit \(c\) ist in allen Inertialsystemen gleich groß.

Zum Artikel
Grundwissen

  • Erstes Postulat (Relativitätsprinzip): Alle Inertialsysteme sind bezüglich aller physikalischen Gesetze gleichberechtigt.
  • Zweites Postulat (Konstanz der Lichtgeschwindigkeit): Die Vakuumlichtgeschwindigkeit \(c\) ist in allen Inertialsystemen gleich groß.

Zum Artikel Zu den Aufgaben

Geschwindigkeitsbetrachtung

Grundwissen

  • Klassische können Geschwindigkeiten von einem bewegten Bezugssystem und einer Bewegung innerhalb einfach addiert werden, um die Geschwindigkeit zu ermitteln, die man im ruhenden Bezugssystem messen würde.
  • Die Konstanz der Lichtgeschwindigkeit hat zur Folge, dass diese einfache Addition nicht richtig sein kann.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Klassische können Geschwindigkeiten von einem bewegten Bezugssystem und einer Bewegung innerhalb einfach addiert werden, um die Geschwindigkeit zu ermitteln, die man im ruhenden Bezugssystem messen würde.
  • Die Konstanz der Lichtgeschwindigkeit hat zur Folge, dass diese einfache Addition nicht richtig sein kann.

Zum Artikel Zu den Aufgaben

Inertialsystem

Grundwissen

  • Ein Inertialsystem ist ein Bezugssystem, in dem ein kräftefreier Körper in Ruhe verharrt oder sich geradlinig-gleichförmig bewegt.
  • Alle Systeme, die sich geradlinig-gleichförmig gegenüber einem Inertialsystem bewegen, sind ebenfalls Inertialsysteme.

Zum Artikel
Grundwissen

  • Ein Inertialsystem ist ein Bezugssystem, in dem ein kräftefreier Körper in Ruhe verharrt oder sich geradlinig-gleichförmig bewegt.
  • Alle Systeme, die sich geradlinig-gleichförmig gegenüber einem Inertialsystem bewegen, sind ebenfalls Inertialsysteme.

Zum Artikel Zu den Aufgaben

Effekte

Grundwissen

  • Zeitdilatation: Eine bewegte Uhr geht langsamer als eine gleichartige im Ruhesystem!
  • Gleichzeitigkeit ist relativ und hängt davon ab, von welchem Bezugssystem aus die Beobachtung erfolgt.
  • Längenkontraktion: Ein bewegter Maßstab ist in Bewegungsrichtung kürzer als im Ruhesystem!

Zum Artikel
Grundwissen

  • Zeitdilatation: Eine bewegte Uhr geht langsamer als eine gleichartige im Ruhesystem!
  • Gleichzeitigkeit ist relativ und hängt davon ab, von welchem Bezugssystem aus die Beobachtung erfolgt.
  • Längenkontraktion: Ein bewegter Maßstab ist in Bewegungsrichtung kürzer als im Ruhesystem!

Zum Artikel Zu den Aufgaben

Zeitdilatation

Grundwissen

  • Zeitdilatation: Eine relativ zu einem Beobachter bewegte Uhr geht aus der Sicht des Beobachters langsamer als ein Satz synchronisierter Uhren im "Beobachter-System".
  • Vereinfacht: Bewegte Uhren gehen langsamer.
  • Der Zusammenhang zwischen Zeit \(\Delta t\) im ruhenden und \(\Delta t'\) im bewegten System ist \(\Delta t = \frac{\Delta t'}{\sqrt{1 - (\frac{v}{c})^2}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zeitdilatation: Eine relativ zu einem Beobachter bewegte Uhr geht aus der Sicht des Beobachters langsamer als ein Satz synchronisierter Uhren im "Beobachter-System".
  • Vereinfacht: Bewegte Uhren gehen langsamer.
  • Der Zusammenhang zwischen Zeit \(\Delta t\) im ruhenden und \(\Delta t'\) im bewegten System ist \(\Delta t = \frac{\Delta t'}{\sqrt{1 - (\frac{v}{c})^2}}\)

Zum Artikel Zu den Aufgaben

Gleichzeitigkeit

Grundwissen

  • In einem Inertialsystem finden zwei Ereignisse an zwei verschiedenen Orten gleichzeitig statt, wenn sie von einem Lichtblitz ausgelöst werden können, der genau aus der Mitte zwischen ihren Orten ausgeht.
  • Finden zwei Ereignisse in einem Inertialsystem gleichzeitig statt, so finden sie in einem zweiten, gegenüber dem ersten Inertialsystem bewegten Inertialsystem zu verschiedenen Zeiten statt.
  • Auch Gleichzeitigkeit ist relativ.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In einem Inertialsystem finden zwei Ereignisse an zwei verschiedenen Orten gleichzeitig statt, wenn sie von einem Lichtblitz ausgelöst werden können, der genau aus der Mitte zwischen ihren Orten ausgeht.
  • Finden zwei Ereignisse in einem Inertialsystem gleichzeitig statt, so finden sie in einem zweiten, gegenüber dem ersten Inertialsystem bewegten Inertialsystem zu verschiedenen Zeiten statt.
  • Auch Gleichzeitigkeit ist relativ.

Zum Artikel Zu den Aufgaben

Relativistische Masse und Impuls

Grundwissen

  • Auch die Masse eines Teilchens und sein Impuls unterliegen relativistischen Effekten.
  • Die relativistische Masse  nimmt mit der Geschwindigkeit \(v\) eines Teilchens stark zu, es gilt: \(m_{\rm{rel}}=\frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}\)
  • Für den relativistischen Impuls gilt \(p = m_{\rm{rel}}\cdot v    \Rightarrow     p = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \cdot v\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auch die Masse eines Teilchens und sein Impuls unterliegen relativistischen Effekten.
  • Die relativistische Masse  nimmt mit der Geschwindigkeit \(v\) eines Teilchens stark zu, es gilt: \(m_{\rm{rel}}=\frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}\)
  • Für den relativistischen Impuls gilt \(p = m_{\rm{rel}}\cdot v    \Rightarrow     p = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \cdot v\)

Zum Artikel Zu den Aufgaben

Elektronenstrahlablenkröhre

Grundwissen

  • In einer Elektronenstrahlablenkröhre werden Elektronen mit Anfangsgeschwindigkeit \(v_0\) senkrecht in ein homogenes E-Feld eines Plattenkondensators gebracht.
  • Die Elektronen bewegen sich im Bereich des homogenen E-Feldes auf einer Parabelbahn.
  • Die Bahnkurve wird beschrieben durch die Gleichung \(y = \frac{1}{4} \cdot \frac{U_{\rm{K}}}{U_{\rm{B}} \cdot d} \cdot {x^2}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • In einer Elektronenstrahlablenkröhre werden Elektronen mit Anfangsgeschwindigkeit \(v_0\) senkrecht in ein homogenes E-Feld eines Plattenkondensators gebracht.
  • Die Elektronen bewegen sich im Bereich des homogenen E-Feldes auf einer Parabelbahn.
  • Die Bahnkurve wird beschrieben durch die Gleichung \(y = \frac{1}{4} \cdot \frac{U_{\rm{K}}}{U_{\rm{B}} \cdot d} \cdot {x^2}\)

Zum Artikel Zu den Aufgaben

Warum ist der Laser wichtig für uns?

Grundwissen

  • Laser kommen in verschiedensten Lebensbereichen zum Einsatz: von der Medizin, über die Datenübertragung im Internet bis hin zur Messwertgewinnung für die Wettervorhersage.

Zum Artikel
Grundwissen

  • Laser kommen in verschiedensten Lebensbereichen zum Einsatz: von der Medizin, über die Datenübertragung im Internet bis hin zur Messwertgewinnung für die Wettervorhersage.

Zum Artikel Zu den Aufgaben

Bestandteile eines Lasers

Grundwissen

  • Laser habe drei zentrale Bestandteile: das Lasermedium, die Pumpe und den Resonator.
  • Die Pumpe bringt Energie ins System und sorgt für eine Besetzungsinversion im Lasermedium.
  • Der Resonator, eine Anordnung aus zwei parallelen Spiegeln, verstärkt den Laserstrahl und richtet ihn aus.

Zum Artikel
Grundwissen

  • Laser habe drei zentrale Bestandteile: das Lasermedium, die Pumpe und den Resonator.
  • Die Pumpe bringt Energie ins System und sorgt für eine Besetzungsinversion im Lasermedium.
  • Der Resonator, eine Anordnung aus zwei parallelen Spiegeln, verstärkt den Laserstrahl und richtet ihn aus.

Zum Artikel Zu den Aufgaben

Stimulierte (induzierte) Emission

Grundwissen

  • Laser nutzen den Effekt der stimulierte (induzierten) Emission.
  • Dabei stimuliert ein Photon ein passend angeregtes Atom dazu, ein Photon zu emittieren.
  • Dieses Photon besitzt die gleiche Energie, die gleiche Schwingungsphase, die gleiche Bewegungsrichtung und die gleiche Polarisation wie das auslösende Photon.

Zum Artikel
Grundwissen

  • Laser nutzen den Effekt der stimulierte (induzierten) Emission.
  • Dabei stimuliert ein Photon ein passend angeregtes Atom dazu, ein Photon zu emittieren.
  • Dieses Photon besitzt die gleiche Energie, die gleiche Schwingungsphase, die gleiche Bewegungsrichtung und die gleiche Polarisation wie das auslösende Photon.

Zum Artikel Zu den Aufgaben

Eigenschaften der Laserstrahlung

Grundwissen

  • Laserlicht ist monofrequent und linear polarisiert.
  • Laserlicht besitzt nur eine sehr geringe Divergenz, ein Laserbündel weitet sich also nur sehr wenig auf.
  • Mit Laserlicht können hohe Leistungsdichten im Fokus erreicht werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Laserlicht ist monofrequent und linear polarisiert.
  • Laserlicht besitzt nur eine sehr geringe Divergenz, ein Laserbündel weitet sich also nur sehr wenig auf.
  • Mit Laserlicht können hohe Leistungsdichten im Fokus erreicht werden.

Zum Artikel Zu den Aufgaben

Lasermedien

Grundwissen

  • In Lasermedien muss eine Besetzungsinversion erzeugt werden, dies ist bei Medien mit nur zwei Energiezuständen nicht möglich.
  • Lasermedien besitzen daher mehr als zwei Energiezustände.
  • Dabei ist ein angeregter Energiezustand, der nicht der höchste ist, metastabil, also langlebig. Eine Besetzungsinversion wird möglich.

Zum Artikel
Grundwissen

  • In Lasermedien muss eine Besetzungsinversion erzeugt werden, dies ist bei Medien mit nur zwei Energiezuständen nicht möglich.
  • Lasermedien besitzen daher mehr als zwei Energiezustände.
  • Dabei ist ein angeregter Energiezustand, der nicht der höchste ist, metastabil, also langlebig. Eine Besetzungsinversion wird möglich.

Zum Artikel Zu den Aufgaben

Was ist Bionik?

Grundwissen
Grundwissen

Der Lotuseffekt - selbstreinigende Oberfläche

Grundwissen
Grundwissen

Auftrieb

Grundwissen
Grundwissen

Flugfrüchte

Grundwissen
Grundwissen

Leichtbauweise

Grundwissen
Grundwissen

Stehende elektromagnetische Welle (Simulation)

Grundwissen

  • Stehende elektromagnetische Wellen entstehen z.B. durch Überlagerung einer einlaufenden Welle mit der in der Metallplatte induzierten Welle.
  •  Der Abstand zweier benachbarter Knoten der stehenden Welle ist gleich der halben Wellenlänge der ursprünglichen, fortschreitenden Welle.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Stehende elektromagnetische Wellen entstehen z.B. durch Überlagerung einer einlaufenden Welle mit der in der Metallplatte induzierten Welle.
  •  Der Abstand zweier benachbarter Knoten der stehenden Welle ist gleich der halben Wellenlänge der ursprünglichen, fortschreitenden Welle.

Zum Artikel Zu den Aufgaben

Kernspaltung

Grundwissen

  • Schwere Atomkerne (große Massenzahl \(A\)) können z. B. durch den Beschuss mit langsamen Neutronen in mehrere kleinere Atomkerne gespalten werden.
  • Bei der Spaltreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Spaltung ist kleiner als die Gesamtmasse vor der Spaltung.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernspaltung frei wird.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Schwere Atomkerne (große Massenzahl \(A\)) können z. B. durch den Beschuss mit langsamen Neutronen in mehrere kleinere Atomkerne gespalten werden.
  • Bei der Spaltreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Spaltung ist kleiner als die Gesamtmasse vor der Spaltung.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernspaltung frei wird.

Zum Artikel Zu den Aufgaben

Kernfusion

Grundwissen

  • Zwei leichte Atomkerne können zu einem größeren Kern fusioniert werden, insbesondere Deuterium und Tritium zu Helium.
  • Bei der Fusionsreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Fusion sind kleiner als die Gesamtmasse vor der Fusion.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernfusion frei wird.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zwei leichte Atomkerne können zu einem größeren Kern fusioniert werden, insbesondere Deuterium und Tritium zu Helium.
  • Bei der Fusionsreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Fusion sind kleiner als die Gesamtmasse vor der Fusion.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernfusion frei wird.

Zum Artikel Zu den Aufgaben

Alphazerfall und Alphastrahlung

Grundwissen

  • Bei Alphastrahlung handelt es sich um eine Teilchenstrahlung aus Heliumatomkernen (zwei Protonen und zwei Neutronen).
  • Alphastrahlung hat eine geringe Reichweite und kann leicht abgeschirmt werden.
  • Alphastrahlung besitzt ein hohes Ionisierungsvermögen (ionisiert viele Teilchen in kleinem Raum).

Zum Artikel
Grundwissen

  • Bei Alphastrahlung handelt es sich um eine Teilchenstrahlung aus Heliumatomkernen (zwei Protonen und zwei Neutronen).
  • Alphastrahlung hat eine geringe Reichweite und kann leicht abgeschirmt werden.
  • Alphastrahlung besitzt ein hohes Ionisierungsvermögen (ionisiert viele Teilchen in kleinem Raum).

Zum Artikel Zu den Aufgaben

Beta-Minus-Zerfall und Beta-Minus-Strahlung

Grundwissen

  • Bei Beta-Minus-Strahlung handelt es sich um eine Teilchenstrahlung aus Elektronen.
  • Bei einem Beta-Minus-Zerfall wandelt sich im Atomkern ein Neutron in ein Proton und ein Elektron (und ein Elektron-Antineutrino) um.
  • Beta-Minus-Strahlung kann durch dünne Metallplatten gut abgeschirmt werden.

Zum Artikel
Grundwissen

  • Bei Beta-Minus-Strahlung handelt es sich um eine Teilchenstrahlung aus Elektronen.
  • Bei einem Beta-Minus-Zerfall wandelt sich im Atomkern ein Neutron in ein Proton und ein Elektron (und ein Elektron-Antineutrino) um.
  • Beta-Minus-Strahlung kann durch dünne Metallplatten gut abgeschirmt werden.

Zum Artikel Zu den Aufgaben