Direkt zum Inhalt
Suchergebnisse 151 - 180 von 205

Hypothetischer Protonenbeschleuniger (Abitur BY 2004 GK A1-1)

Aufgabe ( Übungsaufgaben )

In der Quelle Q werden ruhende Protonen mit Hilfe der Spannung \(U_0\) auf die Geschwindigkeit \(v_0=1{,}4\cdot…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

In der Quelle Q werden ruhende Protonen mit Hilfe der Spannung \(U_0\) auf die Geschwindigkeit \(v_0=1{,}4\cdot…

Zur Aufgabe

Strahlengang durch Prisma

Aufgabe ( Übungsaufgaben )

Ein Lichtstrahl tritt wie in Abb. 1 skizziert aus einem Glasprisma, dessen Grundfläche ein gleichseitiges Dreieck ist, aus und trifft auf eine…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Ein Lichtstrahl tritt wie in Abb. 1 skizziert aus einem Glasprisma, dessen Grundfläche ein gleichseitiges Dreieck ist, aus und trifft auf eine…

Zur Aufgabe

Low-Cost-Zyklotron (Abitur BY 2003 GK A1-2)

Aufgabe ( Übungsaufgaben )

Ein Zyklotron (siehe Skizze) dient zur Beschleunigung geladener Teilchen auf nichtrelativistische Geschwindigkeiten. Es wird mit einem homogenen…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Ein Zyklotron (siehe Skizze) dient zur Beschleunigung geladener Teilchen auf nichtrelativistische Geschwindigkeiten. Es wird mit einem homogenen…

Zur Aufgabe

Vergleich von Flachbatterie und Haushaltsnetz

Aufgabe ( Übungsaufgaben )

Eine Flachbatterie besteht aus drei gleichartigen Zellen von je 1,5V Spannung. …

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Eine Flachbatterie besteht aus drei gleichartigen Zellen von je 1,5V Spannung. …

Zur Aufgabe

Potentielle Energie im homogenen elektrischen Feld

Aufgabe ( Erarbeitungsaufgaben )

Auch bei der Bewegung von geladenen Körpern im homogenen Feld des Plattenkondensators wirkt eine konstante Kraft, nämlich die elektrische Kraft…

Zur Aufgabe
Aufgabe ( Erarbeitungsaufgaben )

Auch bei der Bewegung von geladenen Körpern im homogenen Feld des Plattenkondensators wirkt eine konstante Kraft, nämlich die elektrische Kraft…

Zur Aufgabe

Optische Geräte

Grundwissen

  • Wichtige optische Geräte sind Lupe, Fernrohr, Mikroskop und Fotoapparat.
  • Beim Fernrohr wird zwischen Kepler- und Galilei-Fernrohr unterschieden.
  • Häufig ist die Vergrößerung \(V\) eines optischen Gerätes von besonderem Interesse.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wichtige optische Geräte sind Lupe, Fernrohr, Mikroskop und Fotoapparat.
  • Beim Fernrohr wird zwischen Kepler- und Galilei-Fernrohr unterschieden.
  • Häufig ist die Vergrößerung \(V\) eines optischen Gerätes von besonderem Interesse.

Zum Artikel Zu den Aufgaben

Mikrowellen

Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm m}\) und \(1\,{\rm mm}\)
  • Größenordnung der Frequenz: von \(300\,{\rm MHz}\) bis \(300\,{\rm GHz}\)
  • Anwendungen: Funk, Mikrowellenherd, Radar

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm m}\) und \(1\,{\rm mm}\)
  • Größenordnung der Frequenz: von \(300\,{\rm MHz}\) bis \(300\,{\rm GHz}\)
  • Anwendungen: Funk, Mikrowellenherd, Radar

Zum Artikel Zu den Aufgaben

Gangunterschied bei zwei Quellen

Grundwissen

  • Zur Berechnung des Gangunterschiedes muss unterschieden werden, ob Sender und Empfänger nahe oder weit entfernt voneinander sind im Vergleich zu ihrem Abstand.
  • Bei Reflexion am optisch dichteren Medium muss zusätzlich der Phasensprung berücksichtigt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zur Berechnung des Gangunterschiedes muss unterschieden werden, ob Sender und Empfänger nahe oder weit entfernt voneinander sind im Vergleich zu ihrem Abstand.
  • Bei Reflexion am optisch dichteren Medium muss zusätzlich der Phasensprung berücksichtigt werden.

Zum Artikel Zu den Aufgaben

Potential und elektrische Spannung

Grundwissen

  • Die Potentialdifferenz \(\Delta {\varphi _{\rm{AB}}}\) ist der Quotient aus der Änderung der potentiellen Energie \(\Delta {E_{{\rm{pot}}{\rm{,AB}}}}\) und der Probeladung \(q\).
  • Die Potentialdifferenz zwischen zwei Punkten A und B ist die Spannung \(U_{\rm{AB}}\).
  • Alle Punkte mit gleichem Potential befinden sich auf einer Äquipotentiallinie.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Potentialdifferenz \(\Delta {\varphi _{\rm{AB}}}\) ist der Quotient aus der Änderung der potentiellen Energie \(\Delta {E_{{\rm{pot}}{\rm{,AB}}}}\) und der Probeladung \(q\).
  • Die Potentialdifferenz zwischen zwei Punkten A und B ist die Spannung \(U_{\rm{AB}}\).
  • Alle Punkte mit gleichem Potential befinden sich auf einer Äquipotentiallinie.

Zum Artikel Zu den Aufgaben

Optischer DOPPLER-Effekt

Grundwissen

  • Bewegt sich der Sender auf den Empfänger zu, so ist die vom Empfänger wahrgenommene Wellenlänge \(\lambda'\) kürzer.
  • Bewegt sich der Sender vom Empfänger weg, so ist die vom Empfänger wahrgenommene Wellenlänge \(\lambda'\) länger.
  • Der Effekt führt zur Rot- bzw. Blauverschiebung von Spektren, was genutzt wird, um Planetenbewegungen zu untersuchen.

Zum Artikel
Grundwissen

  • Bewegt sich der Sender auf den Empfänger zu, so ist die vom Empfänger wahrgenommene Wellenlänge \(\lambda'\) kürzer.
  • Bewegt sich der Sender vom Empfänger weg, so ist die vom Empfänger wahrgenommene Wellenlänge \(\lambda'\) länger.
  • Der Effekt führt zur Rot- bzw. Blauverschiebung von Spektren, was genutzt wird, um Planetenbewegungen zu untersuchen.

Zum Artikel Zu den Aufgaben

Ladungseigenschaften

Grundwissen

  • Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
  • Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
  • In Leitern können sich negative Ladungen relativ frei bewegen.
  • Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
  • Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
  • In Leitern können sich negative Ladungen relativ frei bewegen.
  • Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.

Zum Artikel Zu den Aufgaben

Welle - Teilchen - Dualismus

Grundwissen

  • Einige Experimente können besser mit dem Wellenmodell, andere besser mit dem Teilchenmodell des Lichtes erklärt werden.
  • Beide Modelle orientieren sich an unseren makroskopischen Erfahrungen, die zur Beschreibung der Mikroskopischen kaum geeignet sind.
  • Die Quantenphysik bildet ein den beiden Modellen übergeordnetes (stark mathematikorientiertes) Modell.

Zum Artikel
Grundwissen

  • Einige Experimente können besser mit dem Wellenmodell, andere besser mit dem Teilchenmodell des Lichtes erklärt werden.
  • Beide Modelle orientieren sich an unseren makroskopischen Erfahrungen, die zur Beschreibung der Mikroskopischen kaum geeignet sind.
  • Die Quantenphysik bildet ein den beiden Modellen übergeordnetes (stark mathematikorientiertes) Modell.

Zum Artikel Zu den Aufgaben

Statistische Deutung

Grundwissen

  • Quantenobjekte im Sinne der Quantenphysik treten immer als "ganze Portionen" auf.
  • Die Bewegung von Quantenobjekten folgt Wahrscheinlichkeitsgesetzen.
  • Die Quantenmechanik macht statistische Aussagen über die relative Häufigkeit der Ergebnisse bei oftmaliger Wiederholung des gleichen Experiments.

Zum Artikel
Grundwissen

  • Quantenobjekte im Sinne der Quantenphysik treten immer als "ganze Portionen" auf.
  • Die Bewegung von Quantenobjekten folgt Wahrscheinlichkeitsgesetzen.
  • Die Quantenmechanik macht statistische Aussagen über die relative Häufigkeit der Ergebnisse bei oftmaliger Wiederholung des gleichen Experiments.

Zum Artikel Zu den Aufgaben

de-BROGLIE-Wellenlänge

Grundwissen

  • Die de-BROGLIE-Wellenlänge ist eine Übertragung von Eigenschaften von Photonen auf Objekte mit Ruhemasse, z.B. Elektronen
  • Die de-BROGLIE-Wellenlänge für Elektronen berechnest du mittels \(\lambda _{\rm{DB}} = \frac{h}{p_{\rm{e}}}\)
  • Im nicht-relativistischen Fall gilt dann z.B. \({\lambda _{{\rm{DB}}}} = \frac{h}{m_{\rm{e}} \cdot v} = \frac{h}{{\sqrt {2 \cdot {m_{\rm{e}}} \cdot {E_{{\rm{kin}}}}} }} = \frac{h}{{\sqrt {2 \cdot {m_{\rm{e}}} \cdot e \cdot {U_{{\rm{B}}}}} }}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die de-BROGLIE-Wellenlänge ist eine Übertragung von Eigenschaften von Photonen auf Objekte mit Ruhemasse, z.B. Elektronen
  • Die de-BROGLIE-Wellenlänge für Elektronen berechnest du mittels \(\lambda _{\rm{DB}} = \frac{h}{p_{\rm{e}}}\)
  • Im nicht-relativistischen Fall gilt dann z.B. \({\lambda _{{\rm{DB}}}} = \frac{h}{m_{\rm{e}} \cdot v} = \frac{h}{{\sqrt {2 \cdot {m_{\rm{e}}} \cdot {E_{{\rm{kin}}}}} }} = \frac{h}{{\sqrt {2 \cdot {m_{\rm{e}}} \cdot e \cdot {U_{{\rm{B}}}}} }}\)

Zum Artikel Zu den Aufgaben

Quantenobjekte

Grundwissen

Die Quantenphysik zeichnet sich durch vier zentrale Wesenszüge aus: Statistisches Verhalten, Fähigkeit zur Interferenz, Eindeutige Messergebnisse und Komplementarität

Zum Artikel Zu den Aufgaben
Grundwissen

Die Quantenphysik zeichnet sich durch vier zentrale Wesenszüge aus: Statistisches Verhalten, Fähigkeit zur Interferenz, Eindeutige Messergebnisse und Komplementarität

Zum Artikel Zu den Aufgaben

Ein- und Ausschalten von RC-Kreisen

Grundwissen

  • Ladung auf dem Kondensator, Strom im Kreis, und die Spannungen über dem Widerstand und dem Kondensator können beim Ein- und Ausschalten mit Exponentialfunktionen beschrieben werden.
  • Für die Halbwertszeit der Größen gilt jeweils \({t_H} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ladung auf dem Kondensator, Strom im Kreis, und die Spannungen über dem Widerstand und dem Kondensator können beim Ein- und Ausschalten mit Exponentialfunktionen beschrieben werden.
  • Für die Halbwertszeit der Größen gilt jeweils \({t_H} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel Zu den Aufgaben

Linsengleichungen

Grundwissen

  • Die Abbildungsgleichung \(\frac{B}{G} = \frac{b}{g}\) beschreibt den Zusammenhang zwischen Bildgröße \(B\), Gegenstandsgröße \(G\), Bildweite \(b\) und Gegenstandsweite \(g\) bei einer Linsenabbildung.
  • Die Linsengleichung \(\frac{1}{f}=\frac{1}{b}+\frac{1}{g}\) beschreibt den Zusammenhang zwischen Brennweite \(f\), Gegenstandsweite \(g\) und Bildweite \(b\) bei einer Linsenabbildung.
  • Die Linsengleichung kann mithilfe der Hauptstrahlen und des Strahlensatzes hergeleitet werden.
  • Die Linsengleichung gilt sowohl für Sammel- als auch Zerstreuungslinsen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Abbildungsgleichung \(\frac{B}{G} = \frac{b}{g}\) beschreibt den Zusammenhang zwischen Bildgröße \(B\), Gegenstandsgröße \(G\), Bildweite \(b\) und Gegenstandsweite \(g\) bei einer Linsenabbildung.
  • Die Linsengleichung \(\frac{1}{f}=\frac{1}{b}+\frac{1}{g}\) beschreibt den Zusammenhang zwischen Brennweite \(f\), Gegenstandsweite \(g\) und Bildweite \(b\) bei einer Linsenabbildung.
  • Die Linsengleichung kann mithilfe der Hauptstrahlen und des Strahlensatzes hergeleitet werden.
  • Die Linsengleichung gilt sowohl für Sammel- als auch Zerstreuungslinsen.

Zum Artikel Zu den Aufgaben

Sehvorgang

Grundwissen

  • Dein Auge ist - ähnlich wie eine Kamera - ein "Lichtempfänger".
  • Du siehst einen Gegenstand nur dann, wenn Licht von diesem Gegenstand aus in dein Auge fällt.
  • Nicht selbstleuchtende Gegenstände, wie eine Blume, siehst du, wenn diese Gegenstände das Licht von einer Lichtquelle in dein Auge zurückwerfen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Dein Auge ist - ähnlich wie eine Kamera - ein "Lichtempfänger".
  • Du siehst einen Gegenstand nur dann, wenn Licht von diesem Gegenstand aus in dein Auge fällt.
  • Nicht selbstleuchtende Gegenstände, wie eine Blume, siehst du, wenn diese Gegenstände das Licht von einer Lichtquelle in dein Auge zurückwerfen.

Zum Artikel Zu den Aufgaben

KIRCHHOFFsche Gesetze für Fortgeschrittene

Grundwissen

  • Die Knotenregel kann auch bei beliebig vielen zu- und abfließenden Strömen genutzt werden.
  • Die Maschenregel gilt auch bei mehreren Quellen in einem Stromkreis.
  • So lassen sich auch Ströme und Spannungen in sehr komplexen Schaltungen berechnen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Knotenregel kann auch bei beliebig vielen zu- und abfließenden Strömen genutzt werden.
  • Die Maschenregel gilt auch bei mehreren Quellen in einem Stromkreis.
  • So lassen sich auch Ströme und Spannungen in sehr komplexen Schaltungen berechnen.

Zum Artikel Zu den Aufgaben

Einzelspalt

Grundwissen

  • Auch am Einzelspalt treten Interferenzerscheinungen auf.
  • Die Lage der Maxima und Minima wird von der Spaltbreite \(B\) und der Wellenlänge \(\lambda\) beeinflusst.
  • Die Bedingungen für konstruktive und destruktive Interferenz unterscheiden sich von denen beim Doppelspalt bzw. Gitter.

Zum Artikel
Grundwissen

  • Auch am Einzelspalt treten Interferenzerscheinungen auf.
  • Die Lage der Maxima und Minima wird von der Spaltbreite \(B\) und der Wellenlänge \(\lambda\) beeinflusst.
  • Die Bedingungen für konstruktive und destruktive Interferenz unterscheiden sich von denen beim Doppelspalt bzw. Gitter.

Zum Artikel Zu den Aufgaben

Von Ladung zum elektrischen Strom

Grundwissen

  • Werden fortlaufend elektrische Ladungen transportiert, so fließt ein elektrischer Strom.
  • Je mehr Ladungen pro Zeiteinheit durch eine gedachte Testfläche in einem Leiter fließen, desto größer ist die Stromstärke \(I\) im Leiter.
  • Es gilt \({\text{Stromstärke}}=\frac{{{\text{Ladung durch Testfläche}}}}{{{\rm{Messzeit}}}}\), also \(I=\frac{\Delta Q}{\Delta t}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Werden fortlaufend elektrische Ladungen transportiert, so fließt ein elektrischer Strom.
  • Je mehr Ladungen pro Zeiteinheit durch eine gedachte Testfläche in einem Leiter fließen, desto größer ist die Stromstärke \(I\) im Leiter.
  • Es gilt \({\text{Stromstärke}}=\frac{{{\text{Ladung durch Testfläche}}}}{{{\rm{Messzeit}}}}\), also \(I=\frac{\Delta Q}{\Delta t}\)

Zum Artikel Zu den Aufgaben

Elektrische Spannung und Energie

Grundwissen

  • Elektrische Spannung kann gut in Analogie mit dem offenen Wasserkreislauf verstanden werden.
  • Die Spannung einer elektrischen Quelle ist der Quotient aus der potentiellen Energie einer Ladung und dem Ladungsbetrag: \(U = \frac{{{E_{pot}}}}{Q}\)

Zum Artikel
Grundwissen

  • Elektrische Spannung kann gut in Analogie mit dem offenen Wasserkreislauf verstanden werden.
  • Die Spannung einer elektrischen Quelle ist der Quotient aus der potentiellen Energie einer Ladung und dem Ladungsbetrag: \(U = \frac{{{E_{pot}}}}{Q}\)

Zum Artikel Zu den Aufgaben

Reihenschaltung von Widerständen

Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier in Reihe geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(R_{12}=R_1 + R_2\)
  •  Der Gesamtwiderstands einer Reihenschaltung ist stets größer als der größte Einzelwiderstand.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier in Reihe geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(R_{12}=R_1 + R_2\)
  •  Der Gesamtwiderstands einer Reihenschaltung ist stets größer als der größte Einzelwiderstand.

Zum Artikel Zu den Aufgaben

Elektrische Arbeit und Leistung

Grundwissen

  • Die elektrische Arbeit berechnest du mittels \(W_{\rm{el}}=U\cdot I\cdot t\)
  • Typische Einheiten sind \(1\,\rm{J}\) (Joule) oder \(1\,\rm{kWh}\) (Kilowattstunde)
  • Für die elektrische Leistung gilt \(P_{\rm{el}}=U\cdot I = I^2\cdot R\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die elektrische Arbeit berechnest du mittels \(W_{\rm{el}}=U\cdot I\cdot t\)
  • Typische Einheiten sind \(1\,\rm{J}\) (Joule) oder \(1\,\rm{kWh}\) (Kilowattstunde)
  • Für die elektrische Leistung gilt \(P_{\rm{el}}=U\cdot I = I^2\cdot R\)

Zum Artikel Zu den Aufgaben

COMPTON-Effekt

Grundwissen

Joachim Herz Stiftung
  • Der COMPTON-Effekt bezeichnet die Vergrößerung der Wellenlänge \(\lambda\) eines Photons bei der Streuung an einem Teilchen wie bspw. einem Elektron.
  • Die Zunahme der Wellenlänge \(\Delta\lambda\) bei einem Streuwinkel von \(\vartheta\) lässt sich berechnen mittels \[\Delta\lambda =\frac{h}{m_{0}\cdot c} (1-\cos\left(\vartheta\right))= \lambda_{\rm{C}} \cdot (1-\cos\left(\vartheta\right)).\]
  • Die COMPTON-Wellenlänge \(\lambda_{\rm{C}}\) für Elektronen ist \[\lambda_{\rm{C,e}} =\frac{h}{m_{e}\cdot c} = 2{,}43\cdot 10^{-12}\,\rm{m}.\]

Zum Artikel Zu den Aufgaben
Grundwissen

Joachim Herz Stiftung
  • Der COMPTON-Effekt bezeichnet die Vergrößerung der Wellenlänge \(\lambda\) eines Photons bei der Streuung an einem Teilchen wie bspw. einem Elektron.
  • Die Zunahme der Wellenlänge \(\Delta\lambda\) bei einem Streuwinkel von \(\vartheta\) lässt sich berechnen mittels \[\Delta\lambda =\frac{h}{m_{0}\cdot c} (1-\cos\left(\vartheta\right))= \lambda_{\rm{C}} \cdot (1-\cos\left(\vartheta\right)).\]
  • Die COMPTON-Wellenlänge \(\lambda_{\rm{C}}\) für Elektronen ist \[\lambda_{\rm{C,e}} =\frac{h}{m_{e}\cdot c} = 2{,}43\cdot 10^{-12}\,\rm{m}.\]

Zum Artikel Zu den Aufgaben

Transformator

Grundwissen

  • Transformatoren arbeiten i.d.R. immer mit Wechselspannungen und basieren auf Induktion.
  • Transformatoren besitzen eine Primär- und eine Sekundärseite.
  • Man unterscheidet zwischen unbelastetem und belastetem Transformator.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Transformatoren arbeiten i.d.R. immer mit Wechselspannungen und basieren auf Induktion.
  • Transformatoren besitzen eine Primär- und eine Sekundärseite.
  • Man unterscheidet zwischen unbelastetem und belastetem Transformator.

Zum Artikel Zu den Aufgaben

WIENscher Geschwindigkeitsfilter

Grundwissen

  • Ein WIENscher Geschwindigkeitsfilter besteht aus einem homogenen elektrischen Feld und einem homogenen magnetischem Feld, die senkrecht zueinander stehen. Die Elektronen treten senkrecht zu beiden Feldern ein.
  • Nur wenn ein Elektron die passende Geschwindigkeit \(v=\frac{E}{B}\) besitzt, sind die elektrische Kraft und die LORENTZ-Kraft auf das Elektronen gleich groß und es passiert den Geschwindigkeitsfilter.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein WIENscher Geschwindigkeitsfilter besteht aus einem homogenen elektrischen Feld und einem homogenen magnetischem Feld, die senkrecht zueinander stehen. Die Elektronen treten senkrecht zu beiden Feldern ein.
  • Nur wenn ein Elektron die passende Geschwindigkeit \(v=\frac{E}{B}\) besitzt, sind die elektrische Kraft und die LORENTZ-Kraft auf das Elektronen gleich groß und es passiert den Geschwindigkeitsfilter.

Zum Artikel Zu den Aufgaben

Die Heisenbergsche Unbestimmtheitsrelation

Grundwissen

  • Man kann den Ort und den Impuls von Quantenobjekten gleichzeitig nicht beliebig genau bestimmen.
  • Das Produkt aus Orts- und Impulsunbestimmtheit kann nicht beliebig klein werden. Es gilt \(\Delta x \cdot \Delta {p_x} \ge \frac{h}{{4\pi }}\)
  • Damit sind auch klassische Bahnvorstellungen von Teilchen nicht mehr möglich.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man kann den Ort und den Impuls von Quantenobjekten gleichzeitig nicht beliebig genau bestimmen.
  • Das Produkt aus Orts- und Impulsunbestimmtheit kann nicht beliebig klein werden. Es gilt \(\Delta x \cdot \Delta {p_x} \ge \frac{h}{{4\pi }}\)
  • Damit sind auch klassische Bahnvorstellungen von Teilchen nicht mehr möglich.

Zum Artikel Zu den Aufgaben

Ein- und Ausschalten von RL-Kreisen

Grundwissen

  • Insbesondere bei Ein- und Ausschaltvorgängen wird die Selbstinduktion deutlich
  • Strom- und Spannungsverlauf können mathematisch mittels \(e\)-Funktion exakt beschrieben werden

Zum Artikel Zu den Aufgaben
Grundwissen

  • Insbesondere bei Ein- und Ausschaltvorgängen wird die Selbstinduktion deutlich
  • Strom- und Spannungsverlauf können mathematisch mittels \(e\)-Funktion exakt beschrieben werden

Zum Artikel Zu den Aufgaben

Ausbreitung Elektromagnetischer Wellen

Grundwissen

  • Man unterscheidet bei der Ausbreitung elektromagnetischer Wellen zwischen Nahfeld und Fernfeld.
  • Das Nahfeld ist in unmittelbarer Nähe zur Quelle/Antenne.
  • Im Fernfeld schwingen elektrisches und magnetisches Feld in Phase.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man unterscheidet bei der Ausbreitung elektromagnetischer Wellen zwischen Nahfeld und Fernfeld.
  • Das Nahfeld ist in unmittelbarer Nähe zur Quelle/Antenne.
  • Im Fernfeld schwingen elektrisches und magnetisches Feld in Phase.

Zum Artikel Zu den Aufgaben