Direkt zum Inhalt
Suchergebnisse 151 - 180 von 1682

Wurf nach unten - Grundwissen (Animation)

Download ( Animationen )

Die Animation zeigt einen Wurf nach unten (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und verschiedene…

Zum Download
Download ( Animationen )

Die Animation zeigt einen Wurf nach unten (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und verschiedene…

Zum Download

Wurf nach oben ohne Anfangshöhe - Grundwissen (Animation)

Download ( Animationen )

Die Animation zeigt einen Wurf nach oben ohne Anfangshöhe (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und…

Zum Download
Download ( Animationen )

Die Animation zeigt einen Wurf nach oben ohne Anfangshöhe (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und…

Zum Download

Wurf nach oben mit Anfangshöhe - Grundwissen (Animation)

Download ( Animationen )

Die Animation zeigt einen Wurf nach oben mit Anfangshöhe (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und…

Zum Download
Download ( Animationen )

Die Animation zeigt einen Wurf nach oben mit Anfangshöhe (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und…

Zum Download

Wurf nach oben mit Anfangshöhe

Grundwissen

  • Als Wurf nach oben mit Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}} + h\).
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt{{v_{y,0}}^2 + 2 \cdot g \cdot h}}{g}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Wurf nach oben mit Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}} + h\).
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt{{v_{y,0}}^2 + 2 \cdot g \cdot h}}{g}\).

Zum Artikel Zu den Aufgaben

Schräger Wurf nach unten (Animation)

Download ( Animationen )

Die Animation zeigt einen schrägen Wurf nach unten (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und…

Zum Download
Download ( Animationen )

Die Animation zeigt einen schrägen Wurf nach unten (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und…

Zum Download

Schräger Wurf nach unten

Grundwissen

  • Als Schrägen Wurf nach unten bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer schräg nach unten gerichteten Anfangsgeschwindigkeit \(\vec v_0\) "geworfen" wird.
  • Der Körper führt dann in horizontaler Richtung eine gleichförmige Bewegung und in vertikaler Richtung eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt {{v_{y,0}}^2 + 2 \cdot g \cdot h} }{g}\). Beachte: \(v_{y,0}<0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Schrägen Wurf nach unten bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer schräg nach unten gerichteten Anfangsgeschwindigkeit \(\vec v_0\) "geworfen" wird.
  • Der Körper führt dann in horizontaler Richtung eine gleichförmige Bewegung und in vertikaler Richtung eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt {{v_{y,0}}^2 + 2 \cdot g \cdot h} }{g}\). Beachte: \(v_{y,0}<0\).

Zum Artikel Zu den Aufgaben

Induktion durch Änderung der magnetischen Flussdichte - Formelumstellung (Animation)

Download ( Simulation )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der Induktionsspannung bei Änderung der magnetischen Flussdichte nach den fünf…

Zum Download
Download ( Simulation )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der Induktionsspannung bei Änderung der magnetischen Flussdichte nach den fünf…

Zum Download

Induktion durch Änderung des Flächeninhalts - Formelumstellung (Animation)

Download ( Simulation )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der Induktionsspannung bei Änderung des Flächeninhalts nach den fünf in der…

Zum Download
Download ( Simulation )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der Induktionsspannung bei Änderung des Flächeninhalts nach den fünf in der…

Zum Download

Mein Sonnensystem (Simulation von PhET)

Download ( Simulation )

Simulation by PhET Interactive Simulations, University of Colorado Boulder, licensed under CC-BY-4.0 (https://phet.colorado.edu).

Zum Download
Download ( Simulation )

Simulation by PhET Interactive Simulations, University of Colorado Boulder, licensed under CC-BY-4.0 (https://phet.colorado.edu).

Zum Download

Elektromagnetischer Schwingkreis stark gedämpft - aperiodischer Grenzfall (Theorie)

Ausblick

  • Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
  • Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\) und \(\delta = \frac{R}{2 \cdot L}\)

Zum Artikel
Ausblick

  • Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
  • Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\) und \(\delta = \frac{R}{2 \cdot L}\)

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis stark gedämpft - Kriechfall (Theorie)

Ausblick

  • Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
  • Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{1}{L \cdot C}}\) und \(\delta = \frac{R}{2 \cdot L}\)

Zum Artikel
Ausblick

  • Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
  • Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{1}{L \cdot C}}\) und \(\delta = \frac{R}{2 \cdot L}\)

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis ungedämpft (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der ungedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der ungedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Federpendel stark gedämpft - aperiodischer Grenzfall (Theorie)

Ausblick

  • Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel
Ausblick

  • Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel Zu den Aufgaben

Federpendel stark gedämpft - Kriechfall (Theorie)

Ausblick

  • Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{D}{m}}\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel
Ausblick

  • Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{D}{m}}\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel Zu den Aufgaben

Fallschirmsprung (Simulation MintApps)

Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download
Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download

Elektromagnetischer Schwingkreis gedämpft (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der gedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der gedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Aufladen eines Kondensators (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Aufladen eines Kondensators mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Aufladen eines Kondensators mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Entladen eines Kondensators (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Entladen eines Kondensators mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Entladen eines Kondensators mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Einschalten eines Stromkreises mit einer Spule (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Einschalten eines Stromkreises mit einer Spule mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Einschalten eines Stromkreises mit einer Spule mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Fall mit STOKES-Reibung (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der Fall eines Körpers mit STOKES-Reibung mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der Fall eines Körpers mit STOKES-Reibung mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Fall mit STOKES-Reibung (Animation)

Download ( Animationen )

Die Animation zeigt den Fall eines Körpers durch ein Medium mit STOKES-Reibung.

Zum Download
Download ( Animationen )

Die Animation zeigt den Fall eines Körpers durch ein Medium mit STOKES-Reibung.

Zum Download

Fall mit NEWTON-Reibung (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der Fall eines Körpers mit NEWTON-Reibung mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der Fall eines Körpers mit NEWTON-Reibung mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Fall mit NEWTON-Reibung (Animation)

Download ( Simulation )

Die Animation zeigt den Fall eines Körpers durch ein Medium mit NEWTON-Reibung.

Zum Download
Download ( Simulation )

Die Animation zeigt den Fall eines Körpers durch ein Medium mit NEWTON-Reibung.

Zum Download

Ausschalten eines Stromkreises mit einer Spule (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Ausschalten eines Stromkreises mit einer Spule mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Ausschalten eines Stromkreises mit einer Spule mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis gedämpft - Graphen (Animation)

Download ( Simulation )

Die Animation zeigt die Graphen von Ladung auf der "oberen" Kondensatorplatte, Stromstärke, Spannung über dem Kondensator, Spannung über der Spule,…

Zum Download
Download ( Simulation )

Die Animation zeigt die Graphen von Ladung auf der "oberen" Kondensatorplatte, Stromstärke, Spannung über dem Kondensator, Spannung über der Spule,…

Zum Download

Äußerer Photoeffekt (Simulation MintApps)

Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download
Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download

Compton-Effekt (Simulation MintApps)

Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download
Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download

Elektronenbeugungsröhre (Simulation MintApps)

Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download
Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download

KEPLERsche Gesetze (Simulation von PhET)

Download ( Simulation )

Simulation by PhET Interactive Simulations, University of Colorado Boulder, licensed under CC-BY-4.0 (https://phet.colorado.edu).

Zum Download
Download ( Simulation )

Simulation by PhET Interactive Simulations, University of Colorado Boulder, licensed under CC-BY-4.0 (https://phet.colorado.edu).

Zum Download

Zentripetalkraft (Simulation MintApps)

Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download
Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download