Direkt zum Inhalt
Suchergebnisse 301 - 323 von 323

Magnetische Kraft auf einen stromdurchflossenen Kohlestift

Versuche
Versuche

WALTENHOFEN'sches Pendel

Versuche

  • Demonstration der Funktionsweise einer Wirbelstrombremse
  • Untersuchung des Zusammenhangs zwischen der Form des Pendelkörpers und der Bremskraft
  • Diskussion von Vor- und Nachteilen der Wirbelstrombremsen im Einsatz

Zum Artikel
Versuche

  • Demonstration der Funktionsweise einer Wirbelstrombremse
  • Untersuchung des Zusammenhangs zwischen der Form des Pendelkörpers und der Bremskraft
  • Diskussion von Vor- und Nachteilen der Wirbelstrombremsen im Einsatz

Zum Artikel Zu den Aufgaben

Erwärmung durch Schütteln

Versuche

  • Qualitative Demonstration, dass durch Schütteln bzw. Reibearbeit die innere Energie eines Körpers erhöht werden kann.

Zum Artikel
Versuche

  • Qualitative Demonstration, dass durch Schütteln bzw. Reibearbeit die innere Energie eines Körpers erhöht werden kann.

Zum Artikel Zu den Aufgaben

Infrarotstrahlung einer Fernbedienung

Versuche

  • Sichtbarmachen der Signale einer Fernbedienung im nahen Infrarot

Zum Artikel
Versuche

  • Sichtbarmachen der Signale einer Fernbedienung im nahen Infrarot

Zum Artikel Zu den Aufgaben

Strom aus der Dose

Versuche

  • Bau einer "Dosenbatterie" zum Betrieb eines Motors
  • Demonstration des Funktionsprinzips einer galvanischen Zelle
  • Messung von Leerlaufspannung und Kurzschlussstrom

Zum Artikel
Versuche

  • Bau einer "Dosenbatterie" zum Betrieb eines Motors
  • Demonstration des Funktionsprinzips einer galvanischen Zelle
  • Messung von Leerlaufspannung und Kurzschlussstrom

Zum Artikel Zu den Aufgaben

Kreisbahn einer rotierenden Masse

Versuche

  • Veranschaulichung des Zusammenhangs von Winkelgeschwindigkeit und Bahnradius bei konstanter Zentripetalkraft.
  • Übertrag der qualitativen Versuchsergebnisse auf Anwendungen wie Kurvenfahrt oder Satellitenbahn.

Zum Artikel
Versuche

  • Veranschaulichung des Zusammenhangs von Winkelgeschwindigkeit und Bahnradius bei konstanter Zentripetalkraft.
  • Übertrag der qualitativen Versuchsergebnisse auf Anwendungen wie Kurvenfahrt oder Satellitenbahn.

Zum Artikel Zu den Aufgaben

Druckwaage

Versuche

  • Einführung des Druckbegriffes über den Quotienten von Kraft und Masse.

Zum Artikel
Versuche

  • Einführung des Druckbegriffes über den Quotienten von Kraft und Masse.

Zum Artikel Zu den Aufgaben

DOPPLER-Effekt (Video)

Versuche
Versuche

Modellversuch zur Magnetisierung

Versuche

  • Veranschaulichung der WEISSschen Bezirke
  • Demonstration des Umklappens der WEISSschen Bezirke
  • Modell zur Magnetisierung von ferromagnetischen Stoffen

Zum Artikel
Versuche

  • Veranschaulichung der WEISSschen Bezirke
  • Demonstration des Umklappens der WEISSschen Bezirke
  • Modell zur Magnetisierung von ferromagnetischen Stoffen

Zum Artikel Zu den Aufgaben

BARKHAUSEN-Effekt

Versuche

  • Demonstration des BARKHAUSEN-Effekts

Zum Artikel
Versuche

  • Demonstration des BARKHAUSEN-Effekts

Zum Artikel Zu den Aufgaben

Feder-Schwere-Pendel

Grundwissen

  • Ein Feder-Schwere-Pendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = \hat{y} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega } = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{y} \) der Schwingung und dem Ortsfaktor \(g\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Feder-Schwere-Pendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = \hat{y} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega } = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{y} \) der Schwingung und dem Ortsfaktor \(g\).

Zum Artikel Zu den Aufgaben

Massen und Federn (Simulation von PhET)

Versuche
Versuche

Resonanzabsorption von Natrium (qualitativ)

Versuche

  • Veranschaulichung der Folgen der Absorption von Photonen
  • Demonstration diskreter Energieniveaus von Atomen
  • Hinführung zum Absorptionsspektrum

Zum Artikel
Versuche

  • Veranschaulichung der Folgen der Absorption von Photonen
  • Demonstration diskreter Energieniveaus von Atomen
  • Hinführung zum Absorptionsspektrum

Zum Artikel Zu den Aufgaben

Füllungen im Plattenkondensator

Versuche

  • In diesem Versuch wird das Verhalten der Spannung über einem geladenen Plattenkondensator untersucht, wenn bei abgeklemmter elektrischer Quelle verschiedene Materialien zwischen die Platten gebracht werden.

Zum Artikel
Versuche

  • In diesem Versuch wird das Verhalten der Spannung über einem geladenen Plattenkondensator untersucht, wenn bei abgeklemmter elektrischer Quelle verschiedene Materialien zwischen die Platten gebracht werden.

Zum Artikel Zu den Aufgaben

Veränderung des Plattenabstands

Versuche

  • In diesem Versuch wird das Verhalten der Spannung über einem geladenen Plattenkondensator untersucht, wenn bei abgeklemmter elektrischer Quelle der Plattenabstand verändert wird.

Zum Artikel
Versuche

  • In diesem Versuch wird das Verhalten der Spannung über einem geladenen Plattenkondensator untersucht, wenn bei abgeklemmter elektrischer Quelle der Plattenabstand verändert wird.

Zum Artikel Zu den Aufgaben

Wechselwirkungskräfte mit Sensoren

Versuche

Der Versuch veranschaulicht in Diagrammform, dass Wechselwirkungskräfte immer gleich groß, aber entgegengesetzt gerichtet sind.

Zum Artikel
Versuche

Der Versuch veranschaulicht in Diagrammform, dass Wechselwirkungskräfte immer gleich groß, aber entgegengesetzt gerichtet sind.

Zum Artikel Zu den Aufgaben

Hookesches Gesetz (Demonstrationsexperiment)

Versuche

  • Visualisierung des proportionalen Zusammenhangs von Dehnung und Kraft
  • Interpretation der Geradensteigung als Federkonstante \(D\)
  • Grafische Versuchsauswertung für zwei verschiedene Federn

Zum Artikel
Versuche

  • Visualisierung des proportionalen Zusammenhangs von Dehnung und Kraft
  • Interpretation der Geradensteigung als Federkonstante \(D\)
  • Grafische Versuchsauswertung für zwei verschiedene Federn

Zum Artikel Zu den Aufgaben

Kraft zwischen zwei geraden Leitern

Aufgabe ( Übungsaufgaben )

Ein sehr langer gerader Leiter und ein dazu paralleles kurzes Leiterstück der Länge \(25\,\rm{cm}\) werden vom Strom der gleichen Stärke durchflossen.…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Ein sehr langer gerader Leiter und ein dazu paralleles kurzes Leiterstück der Länge \(25\,\rm{cm}\) werden vom Strom der gleichen Stärke durchflossen.…

Zur Aufgabe

Größen zur Beschreibung einer Kreisbewegung

Grundwissen

  • Das (Dreh-)Zentrum \(Z\) ist der Mittelpunkt der Kreisbahn.
  • Der Bahnradius \(r\) ist die (konstant bleibende) Entfernung des Körpers zum Drehzentrum.
  • Die Umlaufdauer \(T\) gibt an, wie lange ein Körper für einen vollständigen Umlauf der Kreisbahn benötigt.
  • Die Frequenz \(f\) ist der Kehrwert der Umlaufdauer: \(f=\frac{1}{T}\). Sie gibt an, wie viele Umläufe ein Körper pro Zeiteinheit absolviert.
  • Mit \(s\) bezeichnen wir die Länge der (Bahn-)Strecke, die der Körper seit dem Start der Kreisbewegung auf der Kreisbahn zurückgelegt hat.
  • Mit \(\varphi\) bezeichnen wir die Weite des Drehwinkels, den der Bahnradius seit dem Start der Kreisbewegung überstrichen hat.
  • Winkel werden bei der Beschreibung von Kreisbewegungen meist im Bogenmaß angegeben. Eine volle Umdrehung von \(360^\circ\) entspricht im Bogenmaß dem Wert \(2\pi\)
  • Es gilt \(s = \varphi  \cdot r \quad {\rm{bzw.}} \quad \varphi  = \frac{s}{r}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das (Dreh-)Zentrum \(Z\) ist der Mittelpunkt der Kreisbahn.
  • Der Bahnradius \(r\) ist die (konstant bleibende) Entfernung des Körpers zum Drehzentrum.
  • Die Umlaufdauer \(T\) gibt an, wie lange ein Körper für einen vollständigen Umlauf der Kreisbahn benötigt.
  • Die Frequenz \(f\) ist der Kehrwert der Umlaufdauer: \(f=\frac{1}{T}\). Sie gibt an, wie viele Umläufe ein Körper pro Zeiteinheit absolviert.
  • Mit \(s\) bezeichnen wir die Länge der (Bahn-)Strecke, die der Körper seit dem Start der Kreisbewegung auf der Kreisbahn zurückgelegt hat.
  • Mit \(\varphi\) bezeichnen wir die Weite des Drehwinkels, den der Bahnradius seit dem Start der Kreisbewegung überstrichen hat.
  • Winkel werden bei der Beschreibung von Kreisbewegungen meist im Bogenmaß angegeben. Eine volle Umdrehung von \(360^\circ\) entspricht im Bogenmaß dem Wert \(2\pi\)
  • Es gilt \(s = \varphi  \cdot r \quad {\rm{bzw.}} \quad \varphi  = \frac{s}{r}\)

Zum Artikel Zu den Aufgaben

Hookesches Gesetz bei Gummis

Versuche

  • Aufnahme eines Dehnungs-Kraft-Diagramms bei einem Gummi.
  • Untersuchung der Anwendbarkeit des Hookeschen Gesetzes.

Zum Artikel
Versuche

  • Aufnahme eines Dehnungs-Kraft-Diagramms bei einem Gummi.
  • Untersuchung der Anwendbarkeit des Hookeschen Gesetzes.

Zum Artikel Zu den Aufgaben

Licht und Farben

Grundwissen

  • Licht hat keine Farbe.
  • Wenn Licht aber auf die Netzhaut im Auge trifft, senden die verschiedenen lichtempfindlichen Zapfen elektrische Impulse an das Gehirn. Dort werden diese Impulse verarbeitet und im Gehirn wird ein Farbeindruck erzeugt.
  • Licht aus verschiedenen Bereichen des Lichtbündels, das nach der Zerlegung von Sonnenlicht entsteht, erzeugt jeweils einen anderen Farbeindruck. Wir unterscheiden das Licht deshalb nach diesem Farbeindruck und bezeichnen z.B. Licht aus dem linken Bereich des Lichtbündels als "Licht der Spektralfarbe Rot" oder kurz als "rotes Licht".
  • Ist Licht verschiedener Spektralfarben gemischt, dann kann dieses Licht Farbeindrücke erzeugen, die mit Licht einer einzelnen Spektralfarbe nicht erzeugt werden können.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Licht hat keine Farbe.
  • Wenn Licht aber auf die Netzhaut im Auge trifft, senden die verschiedenen lichtempfindlichen Zapfen elektrische Impulse an das Gehirn. Dort werden diese Impulse verarbeitet und im Gehirn wird ein Farbeindruck erzeugt.
  • Licht aus verschiedenen Bereichen des Lichtbündels, das nach der Zerlegung von Sonnenlicht entsteht, erzeugt jeweils einen anderen Farbeindruck. Wir unterscheiden das Licht deshalb nach diesem Farbeindruck und bezeichnen z.B. Licht aus dem linken Bereich des Lichtbündels als "Licht der Spektralfarbe Rot" oder kurz als "rotes Licht".
  • Ist Licht verschiedener Spektralfarben gemischt, dann kann dieses Licht Farbeindrücke erzeugen, die mit Licht einer einzelnen Spektralfarbe nicht erzeugt werden können.

Zum Artikel Zu den Aufgaben

Bestimmung von Wellenlängen mit dem Doppelspalt (Näherungsformel) - Formelumstellung

Aufgabe ( Einstiegsaufgaben )

Um Aufgaben zur Bestimmung von Wellenlängen mit dem Doppelspalt zu lösen musst du häufig die Gleichung \(\lambda = \frac{{d \cdot {a_k}}}{{k \cdot…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Um Aufgaben zur Bestimmung von Wellenlängen mit dem Doppelspalt zu lösen musst du häufig die Gleichung \(\lambda = \frac{{d \cdot {a_k}}}{{k \cdot…

Zur Aufgabe