Direkt zum Inhalt
Suchergebnisse 1 - 30 von 155

Physik des Fliegens

Grundwissen

  • Beim Fliegen spielt das Zusammenwirken von Auftriebskraft und Luftwiderstand die „tragende“ Rolle.
  • Man unterscheidet Steigflug, Geradeausflug und Sinkflug.
  • Abgesehen von kurzen Beschleunigungsphasen sind stets alle wirkenden Kräfte im Gleichgewicht.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Fliegen spielt das Zusammenwirken von Auftriebskraft und Luftwiderstand die „tragende“ Rolle.
  • Man unterscheidet Steigflug, Geradeausflug und Sinkflug.
  • Abgesehen von kurzen Beschleunigungsphasen sind stets alle wirkenden Kräfte im Gleichgewicht.

Zum Artikel Zu den Aufgaben

Gefahr durch Strom und Körperwiderstand

Grundwissen

  • Strom kann für den Menschen schon ab ca. \(30\,\rm{mA}\) tödlich sein.
  • Wechselstrom ist gefährlicher als Gleichstrom.
  • Der Körperwiderstand liegt mit Übergangswiderständen der Haut im Bereich von \(1\)-\(5\,\rm{k}\Omega\), je nach Weg durch den Körper.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Strom kann für den Menschen schon ab ca. \(30\,\rm{mA}\) tödlich sein.
  • Wechselstrom ist gefährlicher als Gleichstrom.
  • Der Körperwiderstand liegt mit Übergangswiderständen der Haut im Bereich von \(1\)-\(5\,\rm{k}\Omega\), je nach Weg durch den Körper.

Zum Artikel Zu den Aufgaben

Versuche zur kinetischen Energie

Versuche

  • Mit den folgenden Versuchen kannst du die Formel für die kinetische Energie herleiten oder bestätigen.

Zum Artikel
Versuche

  • Mit den folgenden Versuchen kannst du die Formel für die kinetische Energie herleiten oder bestätigen.

Zum Artikel Zu den Aufgaben

Elektrizität und Ladung

Grundwissen

  • Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
  • Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
  • Ladungen sind die Ursache dafür, dass sich Gegenstände anziehen und abstoßen können.
  • Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
  • Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
  • Ladungen sind die Ursache dafür, dass sich Gegenstände anziehen und abstoßen können.
  • Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.

Zum Artikel Zu den Aufgaben

Experimentelle Herleitung der Formel für die Spannenergie (Simulation)

Versuche

  • Die Simulation ermöglicht es dir, durch die Auswertung eines "Experimentes" die Formel für die Spannenergie herzuleiten.

Zum Artikel Zu den Aufgaben
Versuche

  • Die Simulation ermöglicht es dir, durch die Auswertung eines "Experimentes" die Formel für die Spannenergie herzuleiten.

Zum Artikel Zu den Aufgaben

Induktionsstrom und Regel von Lenz

Grundwissen

  • Der Induktionsstrom ist stets so gerichtet, dass der Induktionsstrom der Ursache seiner Entstehung entgegenwirkt.
  • Die LENZsche ermöglicht einfache Vorhersagen zur Richtung auftretender Induktionsströme.

Zum Artikel
Grundwissen

  • Der Induktionsstrom ist stets so gerichtet, dass der Induktionsstrom der Ursache seiner Entstehung entgegenwirkt.
  • Die LENZsche ermöglicht einfache Vorhersagen zur Richtung auftretender Induktionsströme.

Zum Artikel Zu den Aufgaben

Wirkung einer Kraft als Zentripetalkraft

Grundwissen

  • Bewegt sich ein Körper auf einer Kreisbahn, dann müssen auf den Körper eine oder mehrere Kräfte (z.B. Seilkraft, Haftreibung, Gewichtskraft, Unterlagenkraft, ...) als Zentripetalkraft \(\vec F_{\rm{Z}}\) wirken.
  • Wirkt nur eine einzige Kraft in Richtung des Bahnmittelpunktes, kann diese mit der Zentripetalkraft gleichgesetzt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bewegt sich ein Körper auf einer Kreisbahn, dann müssen auf den Körper eine oder mehrere Kräfte (z.B. Seilkraft, Haftreibung, Gewichtskraft, Unterlagenkraft, ...) als Zentripetalkraft \(\vec F_{\rm{Z}}\) wirken.
  • Wirkt nur eine einzige Kraft in Richtung des Bahnmittelpunktes, kann diese mit der Zentripetalkraft gleichgesetzt werden.

Zum Artikel Zu den Aufgaben

Zentripetalkraft als resultierende Kraft

Grundwissen

  • Bei Kreisbewegungen wirken oft mehrere Kräfte zusammen.
  • Die Gesamtkraft dieser Kräfte muss zum Drehzentrum bzw. einer Drehachse hin gerichtet sein.
  • Die Gesamtkraft dieser Kräfte muss exakt den Betrag \(F_{\rm{Z}}\) haben, der für die Kreisbewegung bei bekannten Werten für \(m\), \(r\) und \(v\) bzw. \(\omega\) benötigt wird.
  • Der Betrag der Gesamtkraft kann durch Vektorielle Addition der einzelnen Kräfte bestimmt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei Kreisbewegungen wirken oft mehrere Kräfte zusammen.
  • Die Gesamtkraft dieser Kräfte muss zum Drehzentrum bzw. einer Drehachse hin gerichtet sein.
  • Die Gesamtkraft dieser Kräfte muss exakt den Betrag \(F_{\rm{Z}}\) haben, der für die Kreisbewegung bei bekannten Werten für \(m\), \(r\) und \(v\) bzw. \(\omega\) benötigt wird.
  • Der Betrag der Gesamtkraft kann durch Vektorielle Addition der einzelnen Kräfte bestimmt werden.

Zum Artikel Zu den Aufgaben

Kreisbewegung unter Einfluss zusätzlicher Kräfte

Grundwissen

  • In manchen Problemstellungen müssen bei der Bestimmung der Zentripetalkraft auch zusätzlich wirkende Kräfte berücksichtigt werden.
  • Je nachdem, in welche Richtung die zusätzliche Kraft wirkt, müssen verschiedene Fälle unterschieden werden.
  • Soll die Kreisbewegung trotz zusätzlich wirkender Kräfte unverändert aufrecht erhalten bleiben, müssen die zusätzlich wirkenden Kräfte entsprechend kompensiert werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In manchen Problemstellungen müssen bei der Bestimmung der Zentripetalkraft auch zusätzlich wirkende Kräfte berücksichtigt werden.
  • Je nachdem, in welche Richtung die zusätzliche Kraft wirkt, müssen verschiedene Fälle unterschieden werden.
  • Soll die Kreisbewegung trotz zusätzlich wirkender Kräfte unverändert aufrecht erhalten bleiben, müssen die zusätzlich wirkenden Kräfte entsprechend kompensiert werden.

Zum Artikel Zu den Aufgaben

Zentripetalbeschleunigung

Grundwissen

  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn, dann wird der Körper immer zum Drehzentrum hin beschleunigt; diese Beschleunigung bezeichnen wir als Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\).
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = {\frac{v^2}{r}}\) zum Drehzentrum hin beschleunigt.
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = \omega^2 \cdot r\) zum Drehzentrum hin beschleunigt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn, dann wird der Körper immer zum Drehzentrum hin beschleunigt; diese Beschleunigung bezeichnen wir als Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\).
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = {\frac{v^2}{r}}\) zum Drehzentrum hin beschleunigt.
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = \omega^2 \cdot r\) zum Drehzentrum hin beschleunigt.

Zum Artikel Zu den Aufgaben

Betrag der Zentripetalbeschleunigung mit Winkelgeschwindigkeit (Simulation mit Versuchsanleitung)

Versuche

Die Simulation ermöglicht die Untersuchung des Betrags der Zentripetalbeschleunigung, die ein Körper während einer gleichförmigen Kreisbewegung erfährt, in Abhängigkeit von den relevanten Parametern.

Zum Artikel Zu den Aufgaben
Versuche

Die Simulation ermöglicht die Untersuchung des Betrags der Zentripetalbeschleunigung, die ein Körper während einer gleichförmigen Kreisbewegung erfährt, in Abhängigkeit von den relevanten Parametern.

Zum Artikel Zu den Aufgaben

Elektrische Ladung und die Einheit Coulomb

Grundwissen

  • Ist ein Körper elektrisch neutral, dann befinden sich in und auf ihm gleich viele Protonen und Elektronen.
  • Ist ein Körper negativ geladen, dann befinden sich in und auf ihm mehr Elektronen als Protonen.
  • Ist ein Körper positiv geladen, dann befinden sich in und auf ihm mehr Protonen als Elektronen (besser: weniger Elektronen als Protonen).
  • Das Formelzeichen für die elektrische Ladung ist \(q\) oder \(Q\), die Maßeinheit der elektrischen Ladung ist \(1\,\rm{C}\) (Coulomb).

Zum Artikel
Grundwissen

  • Ist ein Körper elektrisch neutral, dann befinden sich in und auf ihm gleich viele Protonen und Elektronen.
  • Ist ein Körper negativ geladen, dann befinden sich in und auf ihm mehr Elektronen als Protonen.
  • Ist ein Körper positiv geladen, dann befinden sich in und auf ihm mehr Protonen als Elektronen (besser: weniger Elektronen als Protonen).
  • Das Formelzeichen für die elektrische Ladung ist \(q\) oder \(Q\), die Maßeinheit der elektrischen Ladung ist \(1\,\rm{C}\) (Coulomb).

Zum Artikel Zu den Aufgaben

Resonanzabsorption und Resonanzfluoreszenz von Natrium

Versuche

  • Demonstration der Energieaufnahme von Atomen durch Absorption von Photonen (Resonanzabsorption)
  • Demonstration der Energieabgabe von Atomen durch Emission von Photonen (Resonanzfluoreszenz)

Zum Artikel
Versuche

  • Demonstration der Energieaufnahme von Atomen durch Absorption von Photonen (Resonanzabsorption)
  • Demonstration der Energieabgabe von Atomen durch Emission von Photonen (Resonanzfluoreszenz)

Zum Artikel Zu den Aufgaben

MILLIKAN-Versuch - Schwebe-Fall-Methode ohne CUNNINGHAM-Korrektur (Simulation)

Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben
Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben

MILLIKAN-Versuch - Steige-Fall-Methode ohne CUNNINGHAM-Korrektur (Simulation)

Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben
Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben

MILLIKAN-Versuch - Steige-Sink-Methode ohne CUNNINGHAM-Korrektur (Simulation)

Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben
Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben

Magnetische Flussdichte und die Maßeinheit Tesla

Grundwissen

  • Befindet sich ein gerader Leiter der Länge \(l\), der von einem Strom der Stärke \(I\) durchflossen wird, senkrecht zu den Feldlinien in einem magnetischen Feld, und wirkt auf diesen Leiter eine magnetische Kraft vom Betrag \(F_{\rm{mag}}\), dann definieren wir die magnetische Flussdichte \(B\) des magnetischen Feldes am Ort des Leiters durch \(B := \frac{F_{\rm{mag}}}{l \cdot I}\).
  • Die magnetische Flussdichte \(B\) ist ein Maß für "die Stärke" eines magnetischen Feldes.
  • Das Formelzeichen für die magnetische Flussdichte ist \(B\), die Maßeinheit der magnetischen Flussdichte ist \(1\,\rm{T}\) (Tesla).

Zum Artikel
Grundwissen

  • Befindet sich ein gerader Leiter der Länge \(l\), der von einem Strom der Stärke \(I\) durchflossen wird, senkrecht zu den Feldlinien in einem magnetischen Feld, und wirkt auf diesen Leiter eine magnetische Kraft vom Betrag \(F_{\rm{mag}}\), dann definieren wir die magnetische Flussdichte \(B\) des magnetischen Feldes am Ort des Leiters durch \(B := \frac{F_{\rm{mag}}}{l \cdot I}\).
  • Die magnetische Flussdichte \(B\) ist ein Maß für "die Stärke" eines magnetischen Feldes.
  • Das Formelzeichen für die magnetische Flussdichte ist \(B\), die Maßeinheit der magnetischen Flussdichte ist \(1\,\rm{T}\) (Tesla).

Zum Artikel Zu den Aufgaben

Magnetfeld von langen Zylinderspulen (qualitativ)

Versuche

  • Demonstration des Magnetfelds (insbesonder im Innenraum) von langen Zylinderspulen

Zum Artikel
Versuche

  • Demonstration des Magnetfelds (insbesonder im Innenraum) von langen Zylinderspulen

Zum Artikel Zu den Aufgaben

Wasserparabel (IBE der FU Berlin)

Versuche
Versuche

Wurf nach oben mit Anfangshöhe

Grundwissen

  • Als Wurf nach oben mit Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}} + h\).
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt{{v_{y,0}}^2 + 2 \cdot g \cdot h}}{g}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Wurf nach oben mit Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}} + h\).
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt{{v_{y,0}}^2 + 2 \cdot g \cdot h}}{g}\).

Zum Artikel Zu den Aufgaben

Schräger Wurf nach unten

Grundwissen

  • Als Schrägen Wurf nach unten bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer schräg nach unten gerichteten Anfangsgeschwindigkeit \(\vec v_0\) "geworfen" wird.
  • Der Körper führt dann in horizontaler Richtung eine gleichförmige Bewegung und in vertikaler Richtung eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt {{v_{y,0}}^2 + 2 \cdot g \cdot h} }{g}\). Beachte: \(v_{y,0}<0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Schrägen Wurf nach unten bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer schräg nach unten gerichteten Anfangsgeschwindigkeit \(\vec v_0\) "geworfen" wird.
  • Der Körper führt dann in horizontaler Richtung eine gleichförmige Bewegung und in vertikaler Richtung eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt {{v_{y,0}}^2 + 2 \cdot g \cdot h} }{g}\). Beachte: \(v_{y,0}<0\).

Zum Artikel Zu den Aufgaben

Gleichförmige Bewegung auf der Luftkissenschiene

Versuche

  • Der Versuch soll den Zusammenhang zwischen Durchschnittsgeschwindigkeit und Momentangeschwindigkeit bei einer gleichförmigen Bewegung verdeutlichen

Zum Artikel Zu den Aufgaben
Versuche

  • Der Versuch soll den Zusammenhang zwischen Durchschnittsgeschwindigkeit und Momentangeschwindigkeit bei einer gleichförmigen Bewegung verdeutlichen

Zum Artikel Zu den Aufgaben

Gleichmäßig beschleunigte Bewegung auf der Luftkissenschiene

Versuche

  • Der Versuch soll zwei Verschiedene Methoden zur Ermittlung der Beschleunigung einer gleichmäßig beschleunigten Bewegung ermöglichen

Zum Artikel
Versuche

  • Der Versuch soll zwei Verschiedene Methoden zur Ermittlung der Beschleunigung einer gleichmäßig beschleunigten Bewegung ermöglichen

Zum Artikel Zu den Aufgaben

\(\frac{e}{m_{\rm{e}}}\)-Bestimmung mit dem WIENschen Geschwindigkeitsfilter

Versuche

  • Bestimmung der spezifischen Ladung \(\frac{e}{m_{\rm{e}}}\) von Elektronen mit einem WIENschen Geschwindigkeitsfilter

Zum Artikel
Versuche

  • Bestimmung der spezifischen Ladung \(\frac{e}{m_{\rm{e}}}\) von Elektronen mit einem WIENschen Geschwindigkeitsfilter

Zum Artikel Zu den Aufgaben

Emissionsspektren von Haushaltslampen (IBE der FU Berlin/QUA-LiS NRW)

Versuche

  • Vergleich der Emissionspektren verschiedener Haushaltslampen

Zum Artikel
Versuche

  • Vergleich der Emissionspektren verschiedener Haushaltslampen

Zum Artikel Zu den Aufgaben

Emissionsspektren von LEDs (IBE der FU Berlin/QUA-LiS NRW)

Versuche

  • Vergleich der Emissionspektren verschiedener LEDs

Zum Artikel
Versuche

  • Vergleich der Emissionspektren verschiedener LEDs

Zum Artikel Zu den Aufgaben

Emissionsspektren von Bildschirmfarben (IBE der FU Berlin/QUA-LiS NRW)

Versuche

  • Vergleich der Emissionspektren verschiedener Bildschirmfarben

Zum Artikel
Versuche

  • Vergleich der Emissionspektren verschiedener Bildschirmfarben

Zum Artikel Zu den Aufgaben

Emissionsspektren von Spektralröhren (IBE der FU Berlin/QUA-LiS NRW)

Versuche

  • Vergleich der Emissionspektren verschiedener Spektralröhren

Zum Artikel
Versuche

  • Vergleich der Emissionspektren verschiedener Spektralröhren

Zum Artikel Zu den Aufgaben

Emissionsspektrum von atomarem Wasserstoff mit der BALMER-Röhre

Versuche

  • Quantitative Untersuchung des Emissionspektrums von atomarem Wasserstoff mit der BALMER-Röhre

Zum Artikel
Versuche

  • Quantitative Untersuchung des Emissionspektrums von atomarem Wasserstoff mit der BALMER-Röhre

Zum Artikel Zu den Aufgaben

Absorptionsspektren verschiedener Materialien (IBE der FU Berlin/QUA-LiS NRW)

Versuche

  • Vergleich der Absorptionsspektren verschiedener Materialien

Zum Artikel
Versuche

  • Vergleich der Absorptionsspektren verschiedener Materialien

Zum Artikel Zu den Aufgaben