Direkt zum Inhalt
Suchergebnisse 1 - 30 von 915

Der Mensch als Leiter von Musik

Versuche

  • Demonstration der Leitfähigkeit des menschlichen Körpers
  • Thematisierung der Gefahr von Strom für den Menschen

Zum Artikel
Versuche

  • Demonstration der Leitfähigkeit des menschlichen Körpers
  • Thematisierung der Gefahr von Strom für den Menschen

Zum Artikel Zu den Aufgaben

Hall-Effekt (Grundversuch)

Versuche

  • Qualitativer Nachweis des Auftretens des Hall-Effektes
  • Nachweis von \(U_{\rm{H}} \sim I_{\rm{quer}}\)

Zum Artikel
Versuche

  • Qualitativer Nachweis des Auftretens des Hall-Effektes
  • Nachweis von \(U_{\rm{H}} \sim I_{\rm{quer}}\)

Zum Artikel Zu den Aufgaben

Lichtgeschwindigkeit in Wasser

Versuche

  • Nachweis, dass sich die Lichtgeschwindigkeit in Wasser und in Luft unterscheidet
  • Bestimmung der Lichtgeschwindigkeit in Wasser

Zum Artikel
Versuche

  • Nachweis, dass sich die Lichtgeschwindigkeit in Wasser und in Luft unterscheidet
  • Bestimmung der Lichtgeschwindigkeit in Wasser

Zum Artikel Zu den Aufgaben

Gefahr durch Strom und Körperwiderstand

Grundwissen

  • Strom kann für den Menschen schon ab ca. \(30\,\rm{mA}\) tödlich sein.
  • Wechselstrom ist gefährlicher als Gleichstrom.
  • Der Körperwiderstand liegt mit Übergangswiderständen der Haut im Bereich von \(1\)-\(5\,\rm{k}\Omega\), je nach Weg durch den Körper.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Strom kann für den Menschen schon ab ca. \(30\,\rm{mA}\) tödlich sein.
  • Wechselstrom ist gefährlicher als Gleichstrom.
  • Der Körperwiderstand liegt mit Übergangswiderständen der Haut im Bereich von \(1\)-\(5\,\rm{k}\Omega\), je nach Weg durch den Körper.

Zum Artikel Zu den Aufgaben

Zerfallsgesetz, Zerfallskonstante und Halbwertszeit

Grundwissen

  • Für den Bestand \(N\) der zum Zeitpunkt \(t\) noch nicht zerfallenden Atomkerne gilt \(N(t) = {N_0} \cdot {e^{ - \lambda  \cdot t}}\) mit der Zerfallskonstanten \(\lambda\).
  • Für die Aktivität \(A\) zum Zeitpunkt \(t\) gilt \(A(t) = {A_0} \cdot {e^{ - \lambda  \cdot t}} = \lambda  \cdot {N_0} \cdot {e^{ - \lambda  \cdot t}}\).
  • Die Halbwertszeit \(T_{1/2}\) ist die Zeitspanne, in der sich die Anzahl der nicht zerfallenen Atomkerne eines radioaktiven Präparats halbiert.
  • Zwischen der Zerfallskonstanten \(\lambda\) und der Halbwertszeit \({T_{1/2}}\) besteht der Zusammenhang \(\lambda  = \frac{{\ln \left( 2 \right)}}{{{T_{1/2}}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für den Bestand \(N\) der zum Zeitpunkt \(t\) noch nicht zerfallenden Atomkerne gilt \(N(t) = {N_0} \cdot {e^{ - \lambda  \cdot t}}\) mit der Zerfallskonstanten \(\lambda\).
  • Für die Aktivität \(A\) zum Zeitpunkt \(t\) gilt \(A(t) = {A_0} \cdot {e^{ - \lambda  \cdot t}} = \lambda  \cdot {N_0} \cdot {e^{ - \lambda  \cdot t}}\).
  • Die Halbwertszeit \(T_{1/2}\) ist die Zeitspanne, in der sich die Anzahl der nicht zerfallenen Atomkerne eines radioaktiven Präparats halbiert.
  • Zwischen der Zerfallskonstanten \(\lambda\) und der Halbwertszeit \({T_{1/2}}\) besteht der Zusammenhang \(\lambda  = \frac{{\ln \left( 2 \right)}}{{{T_{1/2}}}}\).

Zum Artikel Zu den Aufgaben

Auswerten von Zerfallskurven

Grundwissen

  • Aus Messwerten vom Zerfall eines radioaktiven Präparates kannst du mit verschiedenen Methoden z.B. die Anfangsaktivität \(A_0\), die Zerfallskonstante \(\lambda\) und die Halbwertszeit \(T_{1/2}\) bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Aus Messwerten vom Zerfall eines radioaktiven Präparates kannst du mit verschiedenen Methoden z.B. die Anfangsaktivität \(A_0\), die Zerfallskonstante \(\lambda\) und die Halbwertszeit \(T_{1/2}\) bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel Zu den Aufgaben

Abbildungsfehler (Aberrationen)

Ausblick

  • In der Praxis treten bei Abbildungen mit Linsen Abbildungsfehler auf.
  • Sphärischen Aberration: Strahlen in unterschiedlichem Abstand von der optischen Achse schneiden sich nicht exakt in einem Punkt.
  • Chromatische Aberration: Licht unterschiedlicher Farben wird unterschiedlich stark gebrochen.

Zum Artikel
Ausblick

  • In der Praxis treten bei Abbildungen mit Linsen Abbildungsfehler auf.
  • Sphärischen Aberration: Strahlen in unterschiedlichem Abstand von der optischen Achse schneiden sich nicht exakt in einem Punkt.
  • Chromatische Aberration: Licht unterschiedlicher Farben wird unterschiedlich stark gebrochen.

Zum Artikel Zu den Aufgaben

Auswerten von Absorptionskurven

Grundwissen

  • Aus Messwerten z.B. der Zählrate \(R\) ionisierender Strahlung hinter Absorbern kannst du mit verschiedenen Methoden z.B. die Zählrate \(R_0\) ohne Absorber, den Absorptionskoeffizienten \(\mu\) und die Halbwertsschichtdicke \(d_{1/2}\) bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel
Grundwissen

  • Aus Messwerten z.B. der Zählrate \(R\) ionisierender Strahlung hinter Absorbern kannst du mit verschiedenen Methoden z.B. die Zählrate \(R_0\) ohne Absorber, den Absorptionskoeffizienten \(\mu\) und die Halbwertsschichtdicke \(d_{1/2}\) bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel Zu den Aufgaben

Stromleitung in Flüssigkeiten

Versuche

  • Untersuchung der Leitung von Strom in verschiedenen Flüssigkeiten
  • Untersuchung des Einflusses des Salzgehaltes von Wasser auf die Stromleitung

Zum Artikel
Versuche

  • Untersuchung der Leitung von Strom in verschiedenen Flüssigkeiten
  • Untersuchung des Einflusses des Salzgehaltes von Wasser auf die Stromleitung

Zum Artikel Zu den Aufgaben

Stromleitung in Gasen

Versuche

  • Untersuchung der Stromleitung in Gasen

Zum Artikel
Versuche

  • Untersuchung der Stromleitung in Gasen

Zum Artikel Zu den Aufgaben

Kraft auf stromdurchflossene Alufolie

Versuche

  • Veranschaulichung der magnetischen Kraftwirkung auf einen stromdurchflossenen Leiter
  • Untersuchung der Richtung der magnetischen Kraftwirkung
  • Herleitung oder Bestätigung der Drei-Finger-Regel

Zum Artikel
Versuche

  • Veranschaulichung der magnetischen Kraftwirkung auf einen stromdurchflossenen Leiter
  • Untersuchung der Richtung der magnetischen Kraftwirkung
  • Herleitung oder Bestätigung der Drei-Finger-Regel

Zum Artikel Zu den Aufgaben

Elektrizität und Ladung

Grundwissen

  • Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
  • Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
  • Ladungen sind die Ursache dafür, dass sich Gegenstände anziehen und abstoßen können.
  • Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
  • Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
  • Ladungen sind die Ursache dafür, dass sich Gegenstände anziehen und abstoßen können.
  • Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.

Zum Artikel Zu den Aufgaben

Auftreten von Induktion

Grundwissen

  • Ändert sich das Magnetfeld, dass eine Spule durchsetzt, so wird in der Spule eine Induktionsspannung induziert.
  • Je größer die Änderung des Magnetfeldes, desto größer die Induktionsspannung.
  • Je schneller die Änderung des Magnetfeldes, desto größer die Induktionsspannung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ändert sich das Magnetfeld, dass eine Spule durchsetzt, so wird in der Spule eine Induktionsspannung induziert.
  • Je größer die Änderung des Magnetfeldes, desto größer die Induktionsspannung.
  • Je schneller die Änderung des Magnetfeldes, desto größer die Induktionsspannung.

Zum Artikel Zu den Aufgaben

Zusammenhang von Induktion und LORENTZ-Kraft

Grundwissen

  • Das Auftreten von Induktionsspannungen kann mithilfe der LORENTZ-Kraft erklärt werden
  • Ladungstrennung aufgrund von Bewegung von Ladung im Magnetfeld wird als Induktionsspannung messbar
  • Wenn sich die vom Magnetfeld durchsetzte Fläche eines Leiterrahmens ändert, wird eine Induktionsspannung messbar

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Auftreten von Induktionsspannungen kann mithilfe der LORENTZ-Kraft erklärt werden
  • Ladungstrennung aufgrund von Bewegung von Ladung im Magnetfeld wird als Induktionsspannung messbar
  • Wenn sich die vom Magnetfeld durchsetzte Fläche eines Leiterrahmens ändert, wird eine Induktionsspannung messbar

Zum Artikel Zu den Aufgaben

Induktionsstrom und Regel von Lenz

Grundwissen

  • Der Induktionsstrom ist stets so gerichtet, dass der Induktionsstrom der Ursache seiner Entstehung entgegenwirkt.
  • Die LENZsche ermöglicht einfache Vorhersagen zur Richtung auftretender Induktionsströme.

Zum Artikel
Grundwissen

  • Der Induktionsstrom ist stets so gerichtet, dass der Induktionsstrom der Ursache seiner Entstehung entgegenwirkt.
  • Die LENZsche ermöglicht einfache Vorhersagen zur Richtung auftretender Induktionsströme.

Zum Artikel Zu den Aufgaben

Spiegelbild (Augmented Reality)

Versuche

  • Veranschaulichung des Strahlengangs am Spiegel mit Augmented Reality (AR)
  • Untersuchung der Sichtbarkeit des Spiegelbildes in Abhängigkeit der Position des Betrachters

Zum Artikel
Versuche

  • Veranschaulichung des Strahlengangs am Spiegel mit Augmented Reality (AR)
  • Untersuchung der Sichtbarkeit des Spiegelbildes in Abhängigkeit der Position des Betrachters

Zum Artikel Zu den Aufgaben

Elektrische Kraft im homogenen elektrischen Feld (Simulation mit Versuchsanleitung)

Versuche

Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Kraft auf eine Ladung im homogenen elektrischen Feld von den relevanten Parametern.

Zum Artikel Zu den Aufgaben
Versuche

Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Kraft auf eine Ladung im homogenen elektrischen Feld von den relevanten Parametern.

Zum Artikel Zu den Aufgaben

Radioaktiver Zerfall in logarithmischer Auftragung

Ausblick
Ausblick

Elektrische Kraft im radialsymmetrischen elektrischen Feld (Simulation mit Versuchsanleitung)

Versuche

Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Kraft auf eine Ladung im radialsymmetrischen elektrischen Feld von den relevanten Parametern.

Zum Artikel Zu den Aufgaben
Versuche

Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Kraft auf eine Ladung im radialsymmetrischen elektrischen Feld von den relevanten Parametern.

Zum Artikel Zu den Aufgaben

Potentialtopfmodell (Fermi-Gas-Modell)

Grundwissen

  • Der Neutronentopf hat am Rand einen horizontalen Potentialverlauf mit Potential Null und einen scharf begrenzten Rand mit Einsetzen der Kernkraft.
  • Beim Protonentopf muss das Coulombpotential berücksichtigt werden, sodass das Potential am Rand positiv und nach außen mit \(\frac{1}{r}\) abfällt.
  • Der Boden des Neutronentopfes liegt energetisch bei ca. \(-46\,\rm{MeV}\), derjenige des Protonentopfes liegt etwas höher, da sich die Protonen im Kern gegenseitig abstoßen.

Zum Artikel
Grundwissen

  • Der Neutronentopf hat am Rand einen horizontalen Potentialverlauf mit Potential Null und einen scharf begrenzten Rand mit Einsetzen der Kernkraft.
  • Beim Protonentopf muss das Coulombpotential berücksichtigt werden, sodass das Potential am Rand positiv und nach außen mit \(\frac{1}{r}\) abfällt.
  • Der Boden des Neutronentopfes liegt energetisch bei ca. \(-46\,\rm{MeV}\), derjenige des Protonentopfes liegt etwas höher, da sich die Protonen im Kern gegenseitig abstoßen.

Zum Artikel Zu den Aufgaben

Influenz und Polarisation

Grundwissen

  • Eine Folge der Kraftwirkung zwischen elektrischen Ladungen ist die Influenz.
  • In elektrischen Leitern bewirkt die Influenz eine Trennung von positiven und negativen Ladungen.
  • In Isolatoren bewirkt die Influenz eine Verschiebung von positiven und negativen Ladungen gegeneinander. Dies nennt man Polarisation.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Eine Folge der Kraftwirkung zwischen elektrischen Ladungen ist die Influenz.
  • In elektrischen Leitern bewirkt die Influenz eine Trennung von positiven und negativen Ladungen.
  • In Isolatoren bewirkt die Influenz eine Verschiebung von positiven und negativen Ladungen gegeneinander. Dies nennt man Polarisation.

Zum Artikel Zu den Aufgaben

I-U-Kennlinien

Ausblick

  • Kennlinien von Leitern können auch als \(I\)-\(U\)-Kennlinie dargestellt werden.
  • Hier entspricht die Steigung des Graphen gerade dem Widerstand \(R\).
  • Bei einem OHMschen Widerstand ist der Proportionalitätsfaktor des \(I\)-\(U\)-Diagramms gerade sein Widerstand \(R\).

Zum Artikel
Ausblick

  • Kennlinien von Leitern können auch als \(I\)-\(U\)-Kennlinie dargestellt werden.
  • Hier entspricht die Steigung des Graphen gerade dem Widerstand \(R\).
  • Bei einem OHMschen Widerstand ist der Proportionalitätsfaktor des \(I\)-\(U\)-Diagramms gerade sein Widerstand \(R\).

Zum Artikel Zu den Aufgaben

Regenbogenschokolade - Reflexionsgitter aus Schokolade

Versuche

  • Herstellung eines Reflexionsgitters aus Schokolade

Zum Artikel
Versuche

  • Herstellung eines Reflexionsgitters aus Schokolade

Zum Artikel Zu den Aufgaben

Blende und Schärfentiefe (Heimversuch)

Versuche

  • Durch einen einfachen Trick ohne Brille so scharf sehen und wie mit Brille.
  • Zwischen zwei Stiften dunkle Linien im Blickfeld erscheinen lassen.
  • Mit zwei Stiften den Punkt eines Lasers zu mehreren Punkten erweitern (Interferenzmuster erzeugen).

Zum Artikel
Versuche

  • Durch einen einfachen Trick ohne Brille so scharf sehen und wie mit Brille.
  • Zwischen zwei Stiften dunkle Linien im Blickfeld erscheinen lassen.
  • Mit zwei Stiften den Punkt eines Lasers zu mehreren Punkten erweitern (Interferenzmuster erzeugen).

Zum Artikel Zu den Aufgaben

Elektrische Kraft

Grundwissen

  • Elektrisch geladene Körper üben aufeinander Kräfte aus. Diese Kräfte nennen wir elektrische Kräfte und bezeichnen sie mit \(\vec F_{\rm{el}}\).
  • Sind zwei Körper gleichartig geladen, also entweder beide positiv oder beide negativ, dann stoßen sich die Körper gegenseitig ab.
  • Sind die Körper dagegen verschiedenartig geladen, also einer positiv und einer negativ, dann ziehen sich die Körper gegenseitig an.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Elektrisch geladene Körper üben aufeinander Kräfte aus. Diese Kräfte nennen wir elektrische Kräfte und bezeichnen sie mit \(\vec F_{\rm{el}}\).
  • Sind zwei Körper gleichartig geladen, also entweder beide positiv oder beide negativ, dann stoßen sich die Körper gegenseitig ab.
  • Sind die Körper dagegen verschiedenartig geladen, also einer positiv und einer negativ, dann ziehen sich die Körper gegenseitig an.

Zum Artikel Zu den Aufgaben

Elektrische Ladung und die Einheit Coulomb

Grundwissen

  • Ist ein Körper elektrisch neutral, dann befinden sich in und auf ihm gleich viele Protonen und Elektronen.
  • Ist ein Körper negativ geladen, dann befinden sich in und auf ihm mehr Elektronen als Protonen.
  • Ist ein Körper positiv geladen, dann befinden sich in und auf ihm mehr Protonen als Elektronen (besser: weniger Elektronen als Protonen).
  • Das Formelzeichen für die elektrische Ladung ist \(q\) oder \(Q\), die Maßeinheit der elektrischen Ladung ist \(1\,\rm{C}\) (Coulomb).

Zum Artikel
Grundwissen

  • Ist ein Körper elektrisch neutral, dann befinden sich in und auf ihm gleich viele Protonen und Elektronen.
  • Ist ein Körper negativ geladen, dann befinden sich in und auf ihm mehr Elektronen als Protonen.
  • Ist ein Körper positiv geladen, dann befinden sich in und auf ihm mehr Protonen als Elektronen (besser: weniger Elektronen als Protonen).
  • Das Formelzeichen für die elektrische Ladung ist \(q\) oder \(Q\), die Maßeinheit der elektrischen Ladung ist \(1\,\rm{C}\) (Coulomb).

Zum Artikel Zu den Aufgaben

Spiegel (Simulation von PhET)

Versuche
Versuche

Linsen (Simulation von PhET)

Versuche
Versuche

MILLIKAN-Versuch - Schwebe-Fall-Methode ohne CUNNINGHAM-Korrektur (Simulation)

Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben
Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben

Interferenzfähigkeit von Photonen im Quantenradierer

Grundwissen

Quantenobjekte besitzen sowohl Welleneigenschaften wie Interferenzfähigkeit, als auch Teilcheneigenschaften wie Unteilbarkeit. Dies kann am Mach-Zehnder-Interferometer verdeutlicht werden:

  • Ob im Interferometer Interferenz auftritt, hängt davon ab, ob der Lichtweg eines Photons eindeutig bestimmbar ist.
  • Wenn einem Photon im Interferometer ein eindeutiger Weg zugeordnet werden kann, tritt keine Interferenz auf.
  • Wenn einem Photon im Interferometer mehrere Wege zugeordnet werden können, tritt Interferenz auf.
  • Die Zuordnung von Lichtwegen kann auch hinter dem Interferometer noch rückgängig gemacht werden ("Quantenradierer")

Zum Artikel Zu den Aufgaben
Grundwissen

Quantenobjekte besitzen sowohl Welleneigenschaften wie Interferenzfähigkeit, als auch Teilcheneigenschaften wie Unteilbarkeit. Dies kann am Mach-Zehnder-Interferometer verdeutlicht werden:

  • Ob im Interferometer Interferenz auftritt, hängt davon ab, ob der Lichtweg eines Photons eindeutig bestimmbar ist.
  • Wenn einem Photon im Interferometer ein eindeutiger Weg zugeordnet werden kann, tritt keine Interferenz auf.
  • Wenn einem Photon im Interferometer mehrere Wege zugeordnet werden können, tritt Interferenz auf.
  • Die Zuordnung von Lichtwegen kann auch hinter dem Interferometer noch rückgängig gemacht werden ("Quantenradierer")

Zum Artikel Zu den Aufgaben