Direkt zum Inhalt
Suchergebnisse 151 - 180 von 411

Magnetfeld eines geraden stromdurchflossenen Leiters (Simulation)

Versuche
Versuche

HALL-Effekt

Grundwissen

  • Befindet sich ein stromdurchflossener Leiter in einem homogenen Magnetfeld, dann baut sich senkrecht sowohl zur Stromfluss- als auch zur Magnetfeldrichtung über dem Leiter eine Spannung, die sogenannte HALL-Spannung \(U_{\rm{H}}\) auf.
  • Ist \(I\) die Stärke des Stroms durch den Leiter, \(B\) die magnetische Feldstärke und \(d\) die Dicke des Leiters parallel zu \(\vec B\), dann berechnet sich die HALL-Spannung durch \({U_{\rm{H}}} = {R_{\rm{H}}} \cdot \frac{{I \cdot B}}{d}\) mit der vom Material des Leiters abhängigen HALL-Konstanten \({R_{\rm{H}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Befindet sich ein stromdurchflossener Leiter in einem homogenen Magnetfeld, dann baut sich senkrecht sowohl zur Stromfluss- als auch zur Magnetfeldrichtung über dem Leiter eine Spannung, die sogenannte HALL-Spannung \(U_{\rm{H}}\) auf.
  • Ist \(I\) die Stärke des Stroms durch den Leiter, \(B\) die magnetische Feldstärke und \(d\) die Dicke des Leiters parallel zu \(\vec B\), dann berechnet sich die HALL-Spannung durch \({U_{\rm{H}}} = {R_{\rm{H}}} \cdot \frac{{I \cdot B}}{d}\) mit der vom Material des Leiters abhängigen HALL-Konstanten \({R_{\rm{H}}}\).

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung einer (elektromagnetischen) Welle

Grundwissen

  • Amplitude \(\hat E\), Schwingungsdauer \(T\) bzw. Frequenz \(f\) und Intensität \(I\) sind zentrale Größen zur Beschreibung einer elektromagnetischen Welle.
  • Für die Wellenlänge gilt \(\lambda=\frac{c}{f}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Amplitude \(\hat E\), Schwingungsdauer \(T\) bzw. Frequenz \(f\) und Intensität \(I\) sind zentrale Größen zur Beschreibung einer elektromagnetischen Welle.
  • Für die Wellenlänge gilt \(\lambda=\frac{c}{f}\).

Zum Artikel Zu den Aufgaben

Geladene Teilchen in elektrischen und magnetischen Feldern

Grundwissen

  • Hier findest du vermischte Aufgaben zu allen Themen aus diesem Themenbereich

Zum Artikel Zu den Aufgaben
Grundwissen

  • Hier findest du vermischte Aufgaben zu allen Themen aus diesem Themenbereich

Zum Artikel Zu den Aufgaben

Geladene Teilchen im magnetischen Feld (schräger Eintritt)

Grundwissen

  • Tritt ein geladenes Teilchen schräg zu den Feldlinien in ein homogenes Magnetisches Feld ein, so durchläuft es im B-Feld eine Schraubenlinie.
  • Für den Radius der Schraubenlinie gilt \(r = \frac{{m \cdot v}}{{q \cdot B}} \cdot \sin \left( \alpha  \right)\)
  • Die Ganghöhe beträgt \(h = \frac{{2 \cdot \pi  \cdot m \cdot v}}{{q \cdot B}} \cdot \cos \left( \alpha  \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Tritt ein geladenes Teilchen schräg zu den Feldlinien in ein homogenes Magnetisches Feld ein, so durchläuft es im B-Feld eine Schraubenlinie.
  • Für den Radius der Schraubenlinie gilt \(r = \frac{{m \cdot v}}{{q \cdot B}} \cdot \sin \left( \alpha  \right)\)
  • Die Ganghöhe beträgt \(h = \frac{{2 \cdot \pi  \cdot m \cdot v}}{{q \cdot B}} \cdot \cos \left( \alpha  \right)\)

Zum Artikel Zu den Aufgaben

Kopplungsparameter

Grundwissen

  • Der Kopplungsparameter bestimmt, wie stark und wie wahrscheinlich eine Wechselwirkung ist.
  • Für jede der vier fundamentalen Wechselwirkungen gibt es einen Kopplungsparameter \(\alpha\).
  • Der Kopplungsparameter der starken Wechselwirkung \(\alpha_{\rm{S}}\) hängt vom Abstand der Elementarteilchen ab und liegt im Bereich von \(0{,}1\) bis \(0{,}5\).
  • Der Kopplungsparameter der schwachen Wechselwirkung ist\({\alpha _{\rm{W}}} \approx \frac{1}{{30}}\) und der elektromagnetischen Wechselwirkung \({\alpha _{\rm{em}}} \approx \frac{1}{{137}}\).

Zum Artikel
Grundwissen

  • Der Kopplungsparameter bestimmt, wie stark und wie wahrscheinlich eine Wechselwirkung ist.
  • Für jede der vier fundamentalen Wechselwirkungen gibt es einen Kopplungsparameter \(\alpha\).
  • Der Kopplungsparameter der starken Wechselwirkung \(\alpha_{\rm{S}}\) hängt vom Abstand der Elementarteilchen ab und liegt im Bereich von \(0{,}1\) bis \(0{,}5\).
  • Der Kopplungsparameter der schwachen Wechselwirkung ist\({\alpha _{\rm{W}}} \approx \frac{1}{{30}}\) und der elektromagnetischen Wechselwirkung \({\alpha _{\rm{em}}} \approx \frac{1}{{137}}\).

Zum Artikel Zu den Aufgaben

Synchro-Zyklotron und Synchrotrone

Ausblick

  • Synchro-Zyklotrone und später Synchrotrone erhöhen die maximale Energie von Teilchenbeschleunigern im Vergleich zu einfachen Zyklotronen.
  • Beim Beschleunigen bzw. beim Ablenken muss das System mit der relativistischen Massenzunahme der Teilchen synchronisiert werden.
  • Man unterscheidet Ionen-Synchrotrone und Elektronen-Synchrotrone

Zum Artikel Zu den Aufgaben
Ausblick

  • Synchro-Zyklotrone und später Synchrotrone erhöhen die maximale Energie von Teilchenbeschleunigern im Vergleich zu einfachen Zyklotronen.
  • Beim Beschleunigen bzw. beim Ablenken muss das System mit der relativistischen Massenzunahme der Teilchen synchronisiert werden.
  • Man unterscheidet Ionen-Synchrotrone und Elektronen-Synchrotrone

Zum Artikel Zu den Aufgaben

Magnetismus-Denksport - Magnet an Eisen (Animation)

Download ( Animationen )

Die Animation zeigt das Verhalten eines Eisenstücks, dem sich ein Magnet an verschiedenen Stellen nähert.

Zum Download
Download ( Animationen )

Die Animation zeigt das Verhalten eines Eisenstücks, dem sich ein Magnet an verschiedenen Stellen nähert.

Zum Download

Magnetismus-Denksport - Magnet an Kompassnadel (Animation)

Download ( Animationen )

Die Animation zeigt das Verhalten einer Kompassnadel, der sich ein Magnet nähert.

Zum Download
Download ( Animationen )

Die Animation zeigt das Verhalten einer Kompassnadel, der sich ein Magnet nähert.

Zum Download

Ferromagnetismus - Elementarmagnete (Animation)

Download ( Animationen )

Die Animation zeigt die atomare Begründung des Modells der Elementarmagnete.

Zum Download
Download ( Animationen )

Die Animation zeigt die atomare Begründung des Modells der Elementarmagnete.

Zum Download

Überblick über die Strahlungsarten

Grundwissen

  • Die drei Strahlungsarten unterscheiden sich in vielfältigen Eigenschaften
  • Aber jede der Strahlungsarten kann für den Menschen gefährlich sein

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die drei Strahlungsarten unterscheiden sich in vielfältigen Eigenschaften
  • Aber jede der Strahlungsarten kann für den Menschen gefährlich sein

Zum Artikel Zu den Aufgaben

Herleitung der Wellenfunktion

Grundwissen

  • Die Wellenfunktion beschreibt die Ausbreitung einer Welle mathematisch.
  • Für eine in positive \(x\)-Richtung laufende Welle gilt: \(y(x;t) = \hat y \cdot \sin \left( {2\pi  \cdot \left( {\frac{t}{T} - \frac{x}{\lambda }} \right)} \right)\)

Zum Artikel
Grundwissen

  • Die Wellenfunktion beschreibt die Ausbreitung einer Welle mathematisch.
  • Für eine in positive \(x\)-Richtung laufende Welle gilt: \(y(x;t) = \hat y \cdot \sin \left( {2\pi  \cdot \left( {\frac{t}{T} - \frac{x}{\lambda }} \right)} \right)\)

Zum Artikel Zu den Aufgaben

Strahlenbelastung durch Höhenstrahlung

Ausblick
Ausblick

Vorzeichen der Induktionsspannung

Versuche

  • Veranschaulichung des Vorzeichens der Induktionsspannung

Zum Artikel
Versuche

  • Veranschaulichung des Vorzeichens der Induktionsspannung

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung von Induktionsvorgängen

Grundwissen

  • Bei unseren Versuchen und Aufgaben zur Induktion ist das magnetische Feld stets homogen und kann durch einen einzigen Feldvektor \(\vec B\) beschrieben werden.
  • Bei unseren Versuchen und Aufgaben zur Induktion ist die Leiterschleife stets eben und kann durch einen einzigen Flächenvektor \(\vec A\) beschrieben werden. \(\vec A\) beschreibt dabei die (Teil-)Fläche der Leiterschleife, die sich im magnetischen Feld befindet.
  • Bei Induktionsvorgängen ist \(\varphi\) die Weite des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\).

Zum Artikel
Grundwissen

  • Bei unseren Versuchen und Aufgaben zur Induktion ist das magnetische Feld stets homogen und kann durch einen einzigen Feldvektor \(\vec B\) beschrieben werden.
  • Bei unseren Versuchen und Aufgaben zur Induktion ist die Leiterschleife stets eben und kann durch einen einzigen Flächenvektor \(\vec A\) beschrieben werden. \(\vec A\) beschreibt dabei die (Teil-)Fläche der Leiterschleife, die sich im magnetischen Feld befindet.
  • Bei Induktionsvorgängen ist \(\varphi\) die Weite des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\).

Zum Artikel Zu den Aufgaben

WIENscher Geschwindigkeitsfilter

Grundwissen

  • Ein WIENscher Geschwindigkeitsfilter besteht aus einem homogenen elektrischen Feld und einem homogenen magnetischem Feld, die senkrecht zueinander stehen. Die Elektronen treten senkrecht zu beiden Feldern ein.
  • Nur wenn ein Elektron die passende Geschwindigkeit \(v=\frac{E}{B}\) besitzt, sind die elektrische Kraft und die LORENTZ-Kraft auf das Elektronen gleich groß und es passiert den Geschwindigkeitsfilter.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein WIENscher Geschwindigkeitsfilter besteht aus einem homogenen elektrischen Feld und einem homogenen magnetischem Feld, die senkrecht zueinander stehen. Die Elektronen treten senkrecht zu beiden Feldern ein.
  • Nur wenn ein Elektron die passende Geschwindigkeit \(v=\frac{E}{B}\) besitzt, sind die elektrische Kraft und die LORENTZ-Kraft auf das Elektronen gleich groß und es passiert den Geschwindigkeitsfilter.

Zum Artikel Zu den Aufgaben

Botenteilchen

Grundwissen

  • Vermittler der starken Wechselwirkung sind 8 verschiedene Gluonen, die verschiedene Kombinationen an Farbladungen tragen.
  • Vermittler der schwachen Wechselwirkung sind \(W^+\)-, \(W^-\)- und \(Z\)-Bosonen, die eine sehr kurze Lebensdauer und eine sehr geringe Reichweite von ca. \(2\cdot 10^{-18}\,\rm{m}\) haben.
  • Photonen sind die Botenteilchen der elektromagnetischen Wechselwirkung, besitzen keinerlei Ladung und haben daher eine unendliche Reichweite.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Vermittler der starken Wechselwirkung sind 8 verschiedene Gluonen, die verschiedene Kombinationen an Farbladungen tragen.
  • Vermittler der schwachen Wechselwirkung sind \(W^+\)-, \(W^-\)- und \(Z\)-Bosonen, die eine sehr kurze Lebensdauer und eine sehr geringe Reichweite von ca. \(2\cdot 10^{-18}\,\rm{m}\) haben.
  • Photonen sind die Botenteilchen der elektromagnetischen Wechselwirkung, besitzen keinerlei Ladung und haben daher eine unendliche Reichweite.

Zum Artikel Zu den Aufgaben

\(\frac{e}{m_{\rm{e}}}\)-Bestimmung mit dem WIENschen Geschwindigkeitsfilter

Versuche

  • Bestimmung der spezifischen Ladung \(\frac{e}{m_{\rm{e}}}\) von Elektronen mit einem WIENschen Geschwindigkeitsfilter

Zum Artikel
Versuche

  • Bestimmung der spezifischen Ladung \(\frac{e}{m_{\rm{e}}}\) von Elektronen mit einem WIENschen Geschwindigkeitsfilter

Zum Artikel Zu den Aufgaben

BAINBRIDGE-Massenspektrometer

Versuche

  • Bestimmung der Masse von geladenen Teilchen

Zum Artikel Zu den Aufgaben
Versuche

  • Bestimmung der Masse von geladenen Teilchen

Zum Artikel Zu den Aufgaben

Stromvorstellungen und Definition der elektrischen Stromrichtung

Geschichte
Geschichte

Ermittlung der Kernradien durch Streuung

Versuche
Versuche