Suchergebnis für:
TORRICELLI-Gleichung
- Die Austrittsgeschwindigkeit eines Wasserstrahls aus der Öffnung hängt nur vom Füllstand, nicht von seiner Form oder der Größe der Austrittsöffnung ab.
- .Für die Austrittsgeschwindigkeit gilt \(v = \sqrt{2 \cdot g \cdot h}\).
- Der Auftreffpunkt auf dem Boden kann idealisiert als waagerechter Wurf berechnet werden.
- Die Austrittsgeschwindigkeit eines Wasserstrahls aus der Öffnung hängt nur vom Füllstand, nicht von seiner Form oder der Größe der Austrittsöffnung ab.
- .Für die Austrittsgeschwindigkeit gilt \(v = \sqrt{2 \cdot g \cdot h}\).
- Der Auftreffpunkt auf dem Boden kann idealisiert als waagerechter Wurf berechnet werden.
Dynamischer Auftrieb und \(c_{\rm{A}}\)-Wert
- Ein nicht symmetrische bzw. nicht symmetrisch zu seiner Form angeströmter Körper erfährt einen dynamischen Auftrieb \(\vec{F}_{\rm{A}}\)
- Der dynamische Auftrieb entsteht im Zusammenspiel von verschiedenen anderen Effekten
- Es gilt \(F_{\rm{A}} = \frac{1}{2} \cdot c_{\rm{A}} \cdot \rho \cdot A \cdot v^2\), wobei \(A\) die Referenzfläche des Körpers und \(c_{\rm{A}}\) der Auftriebsbeiwert ist.
- Ein nicht symmetrische bzw. nicht symmetrisch zu seiner Form angeströmter Körper erfährt einen dynamischen Auftrieb \(\vec{F}_{\rm{A}}\)
- Der dynamische Auftrieb entsteht im Zusammenspiel von verschiedenen anderen Effekten
- Es gilt \(F_{\rm{A}} = \frac{1}{2} \cdot c_{\rm{A}} \cdot \rho \cdot A \cdot v^2\), wobei \(A\) die Referenzfläche des Körpers und \(c_{\rm{A}}\) der Auftriebsbeiwert ist.
Strömungswiderstand und \(c_{\rm{w}}\)-Wert
- Bewegt sich ein Körper relativ zu einem Fluid so erfährt der Körper eine entgegen der relativen Bewegungsrichtung gerichtete Kraft, den Strömungswiderstand \(\vec F_{\rm{w}}\).
- Für den Strömungswiderstand gilt \(F_{\rm{w}} = \frac{1}{2} \cdot c_{\rm{w}} \cdot \rho \cdot A \cdot v^2\)
- Die Größe \(c_{\rm{w}}\) ist der sog. Widerstandsbeiwert, kurz \(c_{\rm{w}}\)-Wert.
- Bewegt sich ein Körper relativ zu einem Fluid so erfährt der Körper eine entgegen der relativen Bewegungsrichtung gerichtete Kraft, den Strömungswiderstand \(\vec F_{\rm{w}}\).
- Für den Strömungswiderstand gilt \(F_{\rm{w}} = \frac{1}{2} \cdot c_{\rm{w}} \cdot \rho \cdot A \cdot v^2\)
- Die Größe \(c_{\rm{w}}\) ist der sog. Widerstandsbeiwert, kurz \(c_{\rm{w}}\)-Wert.
Energie und ihre Eigenschaften
- Energietransport: Energie kann von einem Ort zu einem anderen transportiert werden.
- Energieübertragung: Energie kann von einem Körper oder einem System auf einen anderen Körper oder ein anderes System übertragen werden.
- Energieumwandlung: Energie kann von einer Form in eine andere Form umgewandelt werden.
- Energieerhaltung: Bei der Energieübertragung oder der Energieumwandlung geht keine Energie verloren und kommt keine Energie hinzu.
- Energieentwertung: Bei jeder Energieübertragung oder Energieumwandlung wird ein Teil der zu Beginn vorhandenen Energie entwertet.
- Energietransport: Energie kann von einem Ort zu einem anderen transportiert werden.
- Energieübertragung: Energie kann von einem Körper oder einem System auf einen anderen Körper oder ein anderes System übertragen werden.
- Energieumwandlung: Energie kann von einer Form in eine andere Form umgewandelt werden.
- Energieerhaltung: Bei der Energieübertragung oder der Energieumwandlung geht keine Energie verloren und kommt keine Energie hinzu.
- Energieentwertung: Bei jeder Energieübertragung oder Energieumwandlung wird ein Teil der zu Beginn vorhandenen Energie entwertet.
Wirkung einer Kraft als Zentripetalkraft
- Bewegt sich ein Körper auf einer Kreisbahn, dann müssen auf den Körper eine oder mehrere Kräfte (z.B. Seilkraft, Haftreibung, Gewichtskraft, Unterlagenkraft, ...) als Zentripetalkraft \(\vec F_{\rm{Z}}\) wirken.
- Wirkt nur eine einzige Kraft in Richtung des Bahnmittelpunktes, kann diese mit der Zentripetalkraft gleichgesetzt werden.
- Bewegt sich ein Körper auf einer Kreisbahn, dann müssen auf den Körper eine oder mehrere Kräfte (z.B. Seilkraft, Haftreibung, Gewichtskraft, Unterlagenkraft, ...) als Zentripetalkraft \(\vec F_{\rm{Z}}\) wirken.
- Wirkt nur eine einzige Kraft in Richtung des Bahnmittelpunktes, kann diese mit der Zentripetalkraft gleichgesetzt werden.
Schräger Wurf nach oben ohne Anfangshöhe
- Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
- In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot \cos\left(\alpha_0\right) \cdot t\).
- In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim senkrechten Wurf nach oben ohne Anfangshöhe mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + v_0 \cdot \sin\left(\alpha_0\right) \cdot t\).
- Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{\left( v_0 \cdot \cos\left(\alpha_0\right) \right)}^2} \cdot x^2 +\tan\left(\alpha_0\right) \cdot x\).
- Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
- In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot \cos\left(\alpha_0\right) \cdot t\).
- In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim senkrechten Wurf nach oben ohne Anfangshöhe mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + v_0 \cdot \sin\left(\alpha_0\right) \cdot t\).
- Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{\left( v_0 \cdot \cos\left(\alpha_0\right) \right)}^2} \cdot x^2 +\tan\left(\alpha_0\right) \cdot x\).
Zentripetalkraft als resultierende Kraft
- Bei Kreisbewegungen wirken oft mehrere Kräfte zusammen.
- Die Gesamtkraft dieser Kräfte muss zum Drehzentrum bzw. einer Drehachse hin gerichtet sein.
- Die Gesamtkraft dieser Kräfte muss exakt den Betrag \(F_{\rm{Z}}\) haben, der für die Kreisbewegung bei bekannten Werten für \(m\), \(r\) und \(v\) bzw. \(\omega\) benötigt wird.
- Der Betrag der Gesamtkraft kann durch Vektorielle Addition der einzelnen Kräfte bestimmt werden.
- Bei Kreisbewegungen wirken oft mehrere Kräfte zusammen.
- Die Gesamtkraft dieser Kräfte muss zum Drehzentrum bzw. einer Drehachse hin gerichtet sein.
- Die Gesamtkraft dieser Kräfte muss exakt den Betrag \(F_{\rm{Z}}\) haben, der für die Kreisbewegung bei bekannten Werten für \(m\), \(r\) und \(v\) bzw. \(\omega\) benötigt wird.
- Der Betrag der Gesamtkraft kann durch Vektorielle Addition der einzelnen Kräfte bestimmt werden.
Kreisbewegung unter Einfluss zusätzlicher Kräfte
- In manchen Problemstellungen müssen bei der Bestimmung der Zentripetalkraft auch zusätzlich wirkende Kräfte berücksichtigt werden.
- Je nachdem, in welche Richtung die zusätzliche Kraft wirkt, müssen verschiedene Fälle unterschieden werden.
- Soll die Kreisbewegung trotz zusätzlich wirkender Kräfte unverändert aufrecht erhalten bleiben, müssen die zusätzlich wirkenden Kräfte entsprechend kompensiert werden.
- In manchen Problemstellungen müssen bei der Bestimmung der Zentripetalkraft auch zusätzlich wirkende Kräfte berücksichtigt werden.
- Je nachdem, in welche Richtung die zusätzliche Kraft wirkt, müssen verschiedene Fälle unterschieden werden.
- Soll die Kreisbewegung trotz zusätzlich wirkender Kräfte unverändert aufrecht erhalten bleiben, müssen die zusätzlich wirkenden Kräfte entsprechend kompensiert werden.
Zentripetalbeschleunigung
- Bewegt sich ein Körper gleichförmig auf einer Kreisbahn, dann wird der Körper immer zum Drehzentrum hin beschleunigt; diese Beschleunigung bezeichnen wir als Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\).
- Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = {\frac{v^2}{r}}\) zum Drehzentrum hin beschleunigt.
- Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = \omega^2 \cdot r\) zum Drehzentrum hin beschleunigt.
- Bewegt sich ein Körper gleichförmig auf einer Kreisbahn, dann wird der Körper immer zum Drehzentrum hin beschleunigt; diese Beschleunigung bezeichnen wir als Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\).
- Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = {\frac{v^2}{r}}\) zum Drehzentrum hin beschleunigt.
- Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = \omega^2 \cdot r\) zum Drehzentrum hin beschleunigt.
Stehende Wellen - Typen
- Stehende Wellen mit zwei festen Enden beschreiben u.a. das Schwingen von Saiten.
- Stehende Wellen mit zwei losen Enden beschreiben u.a. die Tonerzeugung von Blockflöten und offenen Orgelpfeifen
- Stehende Wellen mit einem festen und einem losen Ende beschreiben u.a. die Tonerzeugung von Panflöten und gedeckten Orgelpfeifen
- Stehende Wellen mit zwei festen Enden beschreiben u.a. das Schwingen von Saiten.
- Stehende Wellen mit zwei losen Enden beschreiben u.a. die Tonerzeugung von Blockflöten und offenen Orgelpfeifen
- Stehende Wellen mit einem festen und einem losen Ende beschreiben u.a. die Tonerzeugung von Panflöten und gedeckten Orgelpfeifen
Transmission und Reflexion
- Beim Übergang einer Welle vom dünneren zum dichteren Medium läuft die ursprüngliche Welle mit kleinerer Amplitude und kleinerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei wird ein Wellenberg zu einem Wellental und ein Wellental zu einem Wellenberg (Reflexion am festen Ende, Phasensprung von \(\pi\)).
- Beim Übergang einer Welle vom dichteren zum dünneren Medium läuft die ursprüngliche Welle mit veränderter Amplitude und größerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei bleibt ein Wellenberg ein Wellenberg und ein Wellental ein Wellental (Reflexion am losen Ende, kein Phasensprung).
- Beim Übergang einer Welle vom dünneren zum dichteren Medium läuft die ursprüngliche Welle mit kleinerer Amplitude und kleinerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei wird ein Wellenberg zu einem Wellental und ein Wellental zu einem Wellenberg (Reflexion am festen Ende, Phasensprung von \(\pi\)).
- Beim Übergang einer Welle vom dichteren zum dünneren Medium läuft die ursprüngliche Welle mit veränderter Amplitude und größerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei bleibt ein Wellenberg ein Wellenberg und ein Wellental ein Wellental (Reflexion am losen Ende, kein Phasensprung).
Wurf nach oben mit Anfangshöhe
- Als Wurf nach oben mit Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
- Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
- Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}} + h\).
- Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt{{v_{y,0}}^2 + 2 \cdot g \cdot h}}{g}\).
- Als Wurf nach oben mit Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
- Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
- Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}} + h\).
- Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt{{v_{y,0}}^2 + 2 \cdot g \cdot h}}{g}\).
Schräger Wurf nach unten
- Als Schrägen Wurf nach unten bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer schräg nach unten gerichteten Anfangsgeschwindigkeit \(\vec v_0\) "geworfen" wird.
- Der Körper führt dann in horizontaler Richtung eine gleichförmige Bewegung und in vertikaler Richtung eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
- Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt {{v_{y,0}}^2 + 2 \cdot g \cdot h} }{g}\). Beachte: \(v_{y,0}<0\).
- Als Schrägen Wurf nach unten bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer schräg nach unten gerichteten Anfangsgeschwindigkeit \(\vec v_0\) "geworfen" wird.
- Der Körper führt dann in horizontaler Richtung eine gleichförmige Bewegung und in vertikaler Richtung eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
- Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt {{v_{y,0}}^2 + 2 \cdot g \cdot h} }{g}\). Beachte: \(v_{y,0}<0\).
Optische Geräte
- Wichtige optische Geräte sind Lupe, Fernrohr, Mikroskop und Fotoapparat.
- Beim Fernrohr wird zwischen Kepler- und Galilei-Fernrohr unterschieden.
- Häufig ist die Vergrößerung \(V\) eines optischen Gerätes von besonderem Interesse.
- Wichtige optische Geräte sind Lupe, Fernrohr, Mikroskop und Fotoapparat.
- Beim Fernrohr wird zwischen Kepler- und Galilei-Fernrohr unterschieden.
- Häufig ist die Vergrößerung \(V\) eines optischen Gerätes von besonderem Interesse.
Ultraviolett
- Größenordnung der Wellenlänge: zwischen \(380\,{\rm nm}\) und \(1\,{\rm nm}\)
- Größenordnung der Frequenz: von \(789\,{\rm THz}\) bis \(300\,{\rm PHz}\)
- Anwendungen: Schwarzlichtlampen, Geldscheinprüfung, Härtung von Klebstoffen
- Größenordnung der Wellenlänge: zwischen \(380\,{\rm nm}\) und \(1\,{\rm nm}\)
- Größenordnung der Frequenz: von \(789\,{\rm THz}\) bis \(300\,{\rm PHz}\)
- Anwendungen: Schwarzlichtlampen, Geldscheinprüfung, Härtung von Klebstoffen
Röntgenstrahlung
- Größenordnung der Wellenlänge: zwischen \(1\,{\rm nm}\) und \(10\,{\rm pm}\)
- Größenordnung der Frequenz: von \(3\cdot 10^{17}\,{\rm Hz}\) bis \(3\cdot 10^{19}\,{\rm Hz}\)
- Anwendungen: Röntgengeräte, Computertomographen
- Größenordnung der Wellenlänge: zwischen \(1\,{\rm nm}\) und \(10\,{\rm pm}\)
- Größenordnung der Frequenz: von \(3\cdot 10^{17}\,{\rm Hz}\) bis \(3\cdot 10^{19}\,{\rm Hz}\)
- Anwendungen: Röntgengeräte, Computertomographen
Gammastrahlung
- Größenordnung der Wellenlänge: kleiner als \(10\,{\rm pm}\)
- Größenordnung der Frequenz: größer als \(3\cdot 10^{19}\,{\rm Hz}\)
- Auftreten: radioaktiver Zerfall, Umwandlungsreaktionen von Elementarteilchen
- Größenordnung der Wellenlänge: kleiner als \(10\,{\rm pm}\)
- Größenordnung der Frequenz: größer als \(3\cdot 10^{19}\,{\rm Hz}\)
- Auftreten: radioaktiver Zerfall, Umwandlungsreaktionen von Elementarteilchen
Absolute Temperatur
- Der absolute Nullpunkt der Temperatur liegt bei \(\vartheta=-273{,}15\,^\circ{\rm C}\).
- Die Kelvin-Skala hat ihren Nullpunkt am absoluten Nullpunkt. Eine Temperatur von \(\vartheta=-273,15\,^\circ{\rm C}\) entspricht \(0\,{\rm K}\).
- Kelvin-Temperaturen werden mit \(T\) symbolisiert und die Einheit Kelvin wird mit \({\rm K}\) abgekürzt.
- Temperaturdifferenzen \(\Delta T\) werden in der Regel ebenfalls in \(\rm {K}\) angegeben.
- Der absolute Nullpunkt der Temperatur liegt bei \(\vartheta=-273{,}15\,^\circ{\rm C}\).
- Die Kelvin-Skala hat ihren Nullpunkt am absoluten Nullpunkt. Eine Temperatur von \(\vartheta=-273,15\,^\circ{\rm C}\) entspricht \(0\,{\rm K}\).
- Kelvin-Temperaturen werden mit \(T\) symbolisiert und die Einheit Kelvin wird mit \({\rm K}\) abgekürzt.
- Temperaturdifferenzen \(\Delta T\) werden in der Regel ebenfalls in \(\rm {K}\) angegeben.
Wärmestrahlung (Temperaturstrahlung)
- Wärmestrahlung geht in der Regel von jedem Körper aus.
- Je wärmer ein Körper ist, desto intensiver ist die Wärmestrahlung, die von ihm ausgeht.
- Wärmestrahlung benötigt kein Medium um sich auszubreiten.
- Wärmestrahlung geht in der Regel von jedem Körper aus.
- Je wärmer ein Körper ist, desto intensiver ist die Wärmestrahlung, die von ihm ausgeht.
- Wärmestrahlung benötigt kein Medium um sich auszubreiten.
Elektromagnetisches Spektrum
- Das elektromagnetische Spektrum erstreckt sich über viele Größenordnungen hinweg.
- Das sichtbare Licht ist nur ein kleiner Teil des elektromagnetischen Spektrums.
- Das elektromagnetische Spektrum erstreckt sich über viele Größenordnungen hinweg.
- Das sichtbare Licht ist nur ein kleiner Teil des elektromagnetischen Spektrums.
Sichtbares Licht
- Größenordnung der Wellenlänge: zwischen \(780\,{\rm nm}\) und \(380\,{\rm nm}\)
- Größenordnung der Frequenz: von \(384\,{\rm THz}\) bis \(789\,{\rm THz}\)
- Größenordnung der Wellenlänge: zwischen \(780\,{\rm nm}\) und \(380\,{\rm nm}\)
- Größenordnung der Frequenz: von \(384\,{\rm THz}\) bis \(789\,{\rm THz}\)
Infrarot
- Größenordnung der Wellenlänge: zwischen \(1\,{\rm mm}\) und \(780\,{\rm nm}\)
- Größenordnung der Frequenz: von \(300\,{\rm GHz}\) bis \(385\,{\rm THz}\)
- Anwendungen: Fernbedienungen, Temperaturmessung, Vegetationsbestimmung
- Größenordnung der Wellenlänge: zwischen \(1\,{\rm mm}\) und \(780\,{\rm nm}\)
- Größenordnung der Frequenz: von \(300\,{\rm GHz}\) bis \(385\,{\rm THz}\)
- Anwendungen: Fernbedienungen, Temperaturmessung, Vegetationsbestimmung
Mikrowellen
- Größenordnung der Wellenlänge: zwischen \(1\,{\rm m}\) und \(1\,{\rm mm}\)
- Größenordnung der Frequenz: von \(300\,{\rm MHz}\) bis \(300\,{\rm GHz}\)
- Anwendungen: Fund, Mikrowellenherd, Radar
- Größenordnung der Wellenlänge: zwischen \(1\,{\rm m}\) und \(1\,{\rm mm}\)
- Größenordnung der Frequenz: von \(300\,{\rm MHz}\) bis \(300\,{\rm GHz}\)
- Anwendungen: Fund, Mikrowellenherd, Radar
Strahlensatz
Bei einem von einer Punktlichtquelle ausgehendem, divergenten Lichtbündel sind die Entfernung g von der Quelle und die Breite B des Lichtbündels direkt proportional zueinander.\[\frac{B_1}{g_1}=\frac{B_2}{g_2}\qquad \rm{bzw.} \qquad \frac{B}{g}=\rm{const.}\]
Bei einem von einer Punktlichtquelle ausgehendem, divergenten Lichtbündel sind die Entfernung g von der Quelle und die Breite B des Lichtbündels direkt proportional zueinander.\[\frac{B_1}{g_1}=\frac{B_2}{g_2}\qquad \rm{bzw.} \qquad \frac{B}{g}=\rm{const.}\]
Gangunterschied bei zwei Quellen
- Zur Berechnung des Gangunterschiedes muss unterschieden werden, ob Sender und Empfänger nahe oder weit entfernt voneinander sind im Vergleich zu ihrem Abstand.
- Bei Reflexion am optisch dichteren Medium muss zusätzlich der Phasensprung berücksichtigt werden.
- Zur Berechnung des Gangunterschiedes muss unterschieden werden, ob Sender und Empfänger nahe oder weit entfernt voneinander sind im Vergleich zu ihrem Abstand.
- Bei Reflexion am optisch dichteren Medium muss zusätzlich der Phasensprung berücksichtigt werden.
HERTZsche Versuche
- Hertz erzeugte nicht-sichtbare elektromagnetische Wellen mithilfe eines Sendedipols.
- Die so erzeugten elektromagnetischen Wellen verhalten sich in Bezug auf Reflexion, Brechung und Bündelung ähnlich wie Licht.
- Bei Licht handelt es sich um eine elektromagnetische Welle.
- Hertz erzeugte nicht-sichtbare elektromagnetische Wellen mithilfe eines Sendedipols.
- Die so erzeugten elektromagnetischen Wellen verhalten sich in Bezug auf Reflexion, Brechung und Bündelung ähnlich wie Licht.
- Bei Licht handelt es sich um eine elektromagnetische Welle.
Wechselwirkung ungleich Gleichgewicht
- Wechselwirkungskräfte und Kräftegleichgewicht dürfen nicht verwechselt werden.
- Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an, Kräfte im Gleichgewicht an einem einzigen Körper.
- Wechselwirkungskräfte treten immer auf, ein Kräftegleichgewicht kann nur vorliegen, muss aber nicht.
- Wechselwirkungskräfte und Kräftegleichgewicht dürfen nicht verwechselt werden.
- Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an, Kräfte im Gleichgewicht an einem einzigen Körper.
- Wechselwirkungskräfte treten immer auf, ein Kräftegleichgewicht kann nur vorliegen, muss aber nicht.
Wellen
- Wellen treten in verschiedensten Formen auf: Wasserwellen, Schallwellen, elektromagnetische Wellen
- Eine Welle ist eine räumliche und zeitliche Zustandsänderung physikalischer Größen, die meist nach bestimmten periodischen Gesetzmäßigkeiten erfolgt.
- Die Ausbreitung einer Welle ist ein Energietransport, aber kein Materialtransport.
- Wellen treten in verschiedensten Formen auf: Wasserwellen, Schallwellen, elektromagnetische Wellen
- Eine Welle ist eine räumliche und zeitliche Zustandsänderung physikalischer Größen, die meist nach bestimmten periodischen Gesetzmäßigkeiten erfolgt.
- Die Ausbreitung einer Welle ist ein Energietransport, aber kein Materialtransport.
Licht als Teilchen - Vorstellungen von Newton
- In Teilchenvorstellung von Licht besteht das Licht aus winzigen Teilchen (Korpuskeln).
- Geradlinige Lichtausbreitung und Reflexion können mit dem Modell erklärt werden.
- Beugung und Interferenz können nicht mithilfe des Modell erklärt werden.
- In Teilchenvorstellung von Licht besteht das Licht aus winzigen Teilchen (Korpuskeln).
- Geradlinige Lichtausbreitung und Reflexion können mit dem Modell erklärt werden.
- Beugung und Interferenz können nicht mithilfe des Modell erklärt werden.
Überblick über Wärmekraftmaschinen
- Wärmekraftmaschinen erleichtern uns an vielen Stellen im Alltag das Leben.
- Die Dampfmaschine war die erste wichtige Wärmekraftmaschine.
- Der Wirkungsgrad von Wärmekraftmaschinen ist begrenzt.
- Wärmekraftmaschinen erleichtern uns an vielen Stellen im Alltag das Leben.
- Die Dampfmaschine war die erste wichtige Wärmekraftmaschine.
- Der Wirkungsgrad von Wärmekraftmaschinen ist begrenzt.