Direkt zum Inhalt
Suchergebnisse 91 - 120 von 133

Längenkontraktion

Grundwissen

  • Für bewegte Beobachter sind Strecken verkürzt.
  • Für die Längenkontraktion gilt: \(\Delta x' = \Delta x \cdot \sqrt{1 - \left(\frac{v}{c}\right)^2}\)
  • Die Längenkontraktion findet nur in Bewegungsrichtung statt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für bewegte Beobachter sind Strecken verkürzt.
  • Für die Längenkontraktion gilt: \(\Delta x' = \Delta x \cdot \sqrt{1 - \left(\frac{v}{c}\right)^2}\)
  • Die Längenkontraktion findet nur in Bewegungsrichtung statt.

Zum Artikel Zu den Aufgaben

EINSTEINs Postulate

Grundwissen

  • Erstes Postulat (Relativitätsprinzip): Alle Inertialsysteme sind bezüglich aller physikalischen Gesetze gleichberechtigt.
  • Zweites Postulat (Konstanz der Lichtgeschwindigkeit): Die Vakuumlichtgeschwindigkeit \(c\) ist in allen Inertialsystemen gleich groß.

Zum Artikel
Grundwissen

  • Erstes Postulat (Relativitätsprinzip): Alle Inertialsysteme sind bezüglich aller physikalischen Gesetze gleichberechtigt.
  • Zweites Postulat (Konstanz der Lichtgeschwindigkeit): Die Vakuumlichtgeschwindigkeit \(c\) ist in allen Inertialsystemen gleich groß.

Zum Artikel Zu den Aufgaben

Geschwindigkeitsbetrachtung

Grundwissen

  • Klassische können Geschwindigkeiten von einem bewegten Bezugssystem und einer Bewegung innerhalb einfach addiert werden, um die Geschwindigkeit zu ermitteln, die man im ruhenden Bezugssystem messen würde.
  • Die Konstanz der Lichtgeschwindigkeit hat zur Folge, dass diese einfache Addition nicht richtig sein kann.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Klassische können Geschwindigkeiten von einem bewegten Bezugssystem und einer Bewegung innerhalb einfach addiert werden, um die Geschwindigkeit zu ermitteln, die man im ruhenden Bezugssystem messen würde.
  • Die Konstanz der Lichtgeschwindigkeit hat zur Folge, dass diese einfache Addition nicht richtig sein kann.

Zum Artikel Zu den Aufgaben

Inertialsystem

Grundwissen

  • Ein Inertialsystem ist ein Bezugssystem, in dem ein kräftefreier Körper in Ruhe verharrt oder sich geradlinig-gleichförmig bewegt.
  • Alle Systeme, die sich geradlinig-gleichförmig gegenüber einem Inertialsystem bewegen, sind ebenfalls Inertialsysteme.

Zum Artikel
Grundwissen

  • Ein Inertialsystem ist ein Bezugssystem, in dem ein kräftefreier Körper in Ruhe verharrt oder sich geradlinig-gleichförmig bewegt.
  • Alle Systeme, die sich geradlinig-gleichförmig gegenüber einem Inertialsystem bewegen, sind ebenfalls Inertialsysteme.

Zum Artikel Zu den Aufgaben

Effekte

Grundwissen

  • Zeitdilatation: Eine bewegte Uhr geht langsamer als eine gleichartige im Ruhesystem!
  • Gleichzeitigkeit ist relativ und hängt davon ab, von welchem Bezugssystem aus die Beobachtung erfolgt.
  • Längenkontraktion: Ein bewegter Maßstab ist in Bewegungsrichtung kürzer als im Ruhesystem!

Zum Artikel
Grundwissen

  • Zeitdilatation: Eine bewegte Uhr geht langsamer als eine gleichartige im Ruhesystem!
  • Gleichzeitigkeit ist relativ und hängt davon ab, von welchem Bezugssystem aus die Beobachtung erfolgt.
  • Längenkontraktion: Ein bewegter Maßstab ist in Bewegungsrichtung kürzer als im Ruhesystem!

Zum Artikel Zu den Aufgaben

Zeitdilatation

Grundwissen

  • Zeitdilatation: Eine relativ zu einem Beobachter bewegte Uhr geht aus der Sicht des Beobachters langsamer als ein Satz synchronisierter Uhren im "Beobachter-System".
  • Vereinfacht: Bewegte Uhren gehen langsamer.
  • Der Zusammenhang zwischen Zeit \(\Delta t\) im ruhenden und \(\Delta t'\) im bewegten System ist \(\Delta t = \frac{\Delta t'}{\sqrt{1 - (\frac{v}{c})^2}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zeitdilatation: Eine relativ zu einem Beobachter bewegte Uhr geht aus der Sicht des Beobachters langsamer als ein Satz synchronisierter Uhren im "Beobachter-System".
  • Vereinfacht: Bewegte Uhren gehen langsamer.
  • Der Zusammenhang zwischen Zeit \(\Delta t\) im ruhenden und \(\Delta t'\) im bewegten System ist \(\Delta t = \frac{\Delta t'}{\sqrt{1 - (\frac{v}{c})^2}}\)

Zum Artikel Zu den Aufgaben

Gleichzeitigkeit

Grundwissen

  • In einem Inertialsystem finden zwei Ereignisse an zwei verschiedenen Orten gleichzeitig statt, wenn sie von einem Lichtblitz ausgelöst werden können, der genau aus der Mitte zwischen ihren Orten ausgeht.
  • Finden zwei Ereignisse in einem Inertialsystem gleichzeitig statt, so finden sie in einem zweiten, gegenüber dem ersten Inertialsystem bewegten Inertialsystem zu verschiedenen Zeiten statt.
  • Auch Gleichzeitigkeit ist relativ.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In einem Inertialsystem finden zwei Ereignisse an zwei verschiedenen Orten gleichzeitig statt, wenn sie von einem Lichtblitz ausgelöst werden können, der genau aus der Mitte zwischen ihren Orten ausgeht.
  • Finden zwei Ereignisse in einem Inertialsystem gleichzeitig statt, so finden sie in einem zweiten, gegenüber dem ersten Inertialsystem bewegten Inertialsystem zu verschiedenen Zeiten statt.
  • Auch Gleichzeitigkeit ist relativ.

Zum Artikel Zu den Aufgaben

Relativistische Masse und Impuls

Grundwissen

  • Auch die Masse eines Teilchens und sein Impuls unterliegen relativistischen Effekten.
  • Die relativistische Masse  nimmt mit der Geschwindigkeit \(v\) eines Teilchens stark zu, es gilt: \(m_{\rm{rel}}=\frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}\)
  • Für den relativistischen Impuls gilt \(p = m_{\rm{rel}}\cdot v    \Rightarrow     p = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \cdot v\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auch die Masse eines Teilchens und sein Impuls unterliegen relativistischen Effekten.
  • Die relativistische Masse  nimmt mit der Geschwindigkeit \(v\) eines Teilchens stark zu, es gilt: \(m_{\rm{rel}}=\frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}\)
  • Für den relativistischen Impuls gilt \(p = m_{\rm{rel}}\cdot v    \Rightarrow     p = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \cdot v\)

Zum Artikel Zu den Aufgaben

Kernspaltung

Grundwissen

  • Schwere Atomkerne (große Massenzahl \(A\)) können z. B. durch den Beschuss mit langsamen Neutronen in mehrere kleinere Atomkerne gespalten werden.
  • Bei der Spaltreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Spaltung ist kleiner als die Gesamtmasse vor der Spaltung.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernspaltung frei wird.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Schwere Atomkerne (große Massenzahl \(A\)) können z. B. durch den Beschuss mit langsamen Neutronen in mehrere kleinere Atomkerne gespalten werden.
  • Bei der Spaltreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Spaltung ist kleiner als die Gesamtmasse vor der Spaltung.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernspaltung frei wird.

Zum Artikel Zu den Aufgaben

Kernfusion

Grundwissen

  • Zwei leichte Atomkerne können zu einem größeren Kern fusioniert werden, insbesondere Deuterium und Tritium zu Helium.
  • Bei der Fusionsreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Fusion sind kleiner als die Gesamtmasse vor der Fusion.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernfusion frei wird.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zwei leichte Atomkerne können zu einem größeren Kern fusioniert werden, insbesondere Deuterium und Tritium zu Helium.
  • Bei der Fusionsreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Fusion sind kleiner als die Gesamtmasse vor der Fusion.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernfusion frei wird.

Zum Artikel Zu den Aufgaben

Alphazerfall und Alphastrahlung

Grundwissen

  • Bei Alphastrahlung handelt es sich um eine Teilchenstrahlung aus Heliumatomkernen (zwei Protonen und zwei Neutronen).
  • Alphastrahlung hat eine geringe Reichweite und kann leicht abgeschirmt werden.
  • Alphastrahlung besitzt ein hohes Ionisierungsvermögen (ionisiert viele Teilchen in kleinem Raum).

Zum Artikel
Grundwissen

  • Bei Alphastrahlung handelt es sich um eine Teilchenstrahlung aus Heliumatomkernen (zwei Protonen und zwei Neutronen).
  • Alphastrahlung hat eine geringe Reichweite und kann leicht abgeschirmt werden.
  • Alphastrahlung besitzt ein hohes Ionisierungsvermögen (ionisiert viele Teilchen in kleinem Raum).

Zum Artikel Zu den Aufgaben

Beta-Minus-Zerfall und Beta-Minus-Strahlung

Grundwissen

  • Bei Beta-Minus-Strahlung handelt es sich um eine Teilchenstrahlung aus Elektronen.
  • Bei einem Beta-Minus-Zerfall wandelt sich im Atomkern ein Neutron in ein Proton und ein Elektron (und ein Elektron-Antineutrino) um.
  • Beta-Minus-Strahlung kann durch dünne Metallplatten gut abgeschirmt werden.

Zum Artikel
Grundwissen

  • Bei Beta-Minus-Strahlung handelt es sich um eine Teilchenstrahlung aus Elektronen.
  • Bei einem Beta-Minus-Zerfall wandelt sich im Atomkern ein Neutron in ein Proton und ein Elektron (und ein Elektron-Antineutrino) um.
  • Beta-Minus-Strahlung kann durch dünne Metallplatten gut abgeschirmt werden.

Zum Artikel Zu den Aufgaben

Gammaübergang und Gammastrahlung

Grundwissen

  • Bei Gammastrahlung handelt es sich um elektromagnetische Strahlung in Form von Gammaquanten.
  • Gammastrahlung entsteht, wenn ein Atomkern von angeregtem in einen energetisch günstigeren Zustand übergeht. Dabei ändern sich die Kennzahlen des Kerns nicht.
  • Gammastrahlung hat eine sehr große Reichweite, durchdringt alle Materialien und kann nur mit sehr dicken Bleischichten wirkungsvoll abgeschirmt werden.

Zum Artikel
Grundwissen

  • Bei Gammastrahlung handelt es sich um elektromagnetische Strahlung in Form von Gammaquanten.
  • Gammastrahlung entsteht, wenn ein Atomkern von angeregtem in einen energetisch günstigeren Zustand übergeht. Dabei ändern sich die Kennzahlen des Kerns nicht.
  • Gammastrahlung hat eine sehr große Reichweite, durchdringt alle Materialien und kann nur mit sehr dicken Bleischichten wirkungsvoll abgeschirmt werden.

Zum Artikel Zu den Aufgaben

Erklärungsprobleme des Photoeffekts

Grundwissen

Einige Aspekte des Photoeffektes können mit dem klassischen Wellenmodell nur schwerlich erklärt werden:

  • Die Existenz einer oberen Grenzwellenlänge oberhalb derer auch bei gesteigerter Intensität keine Elektronen mehr ausgelöst werden.
  • Trägheitsloses Einsetzen des Photostroms

Das Photonenmodell liefert für dieses Aspekte plausible Erklärungen.

Zum Artikel
Grundwissen

Einige Aspekte des Photoeffektes können mit dem klassischen Wellenmodell nur schwerlich erklärt werden:

  • Die Existenz einer oberen Grenzwellenlänge oberhalb derer auch bei gesteigerter Intensität keine Elektronen mehr ausgelöst werden.
  • Trägheitsloses Einsetzen des Photostroms

Das Photonenmodell liefert für dieses Aspekte plausible Erklärungen.

Zum Artikel Zu den Aufgaben

Ionisierung durch Strahlung

Grundwissen

  • \(\alpha\)-, \(\beta\)- und \(\gamma\)-Strahlung kann andere Teilchen ionisieren.
  • Das Ionisationsvermögen gibt an, wie viele Teilchen auf einer bestimmten Wegstrecke durch die Strahlung ionisiert werden.
  • Das Ionisationsvermögen von \(\alpha\)-Strahlung ist höher als das von \(\beta\)-Strahlung, das von \(\beta\)- höher als von \(\gamma\)-Strahlung.
  • Durch Ionisationsprozesse schädigt \(\alpha\)-, \(\beta\)- und \(\gamma\)-Strahlung Gewebezellen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • \(\alpha\)-, \(\beta\)- und \(\gamma\)-Strahlung kann andere Teilchen ionisieren.
  • Das Ionisationsvermögen gibt an, wie viele Teilchen auf einer bestimmten Wegstrecke durch die Strahlung ionisiert werden.
  • Das Ionisationsvermögen von \(\alpha\)-Strahlung ist höher als das von \(\beta\)-Strahlung, das von \(\beta\)- höher als von \(\gamma\)-Strahlung.
  • Durch Ionisationsprozesse schädigt \(\alpha\)-, \(\beta\)- und \(\gamma\)-Strahlung Gewebezellen.

Zum Artikel Zu den Aufgaben

Kopplungsparameter

Grundwissen

  • Der Kopplungsparameter bestimmt, wie stark und wie wahrscheinlich eine Wechselwirkung ist.
  • Für jede der vier fundamentalen Wechselwirkungen gibt es einen Kopplungsparameter \(\alpha\).
  • Der Kopplungsparameter der starken Wechselwirkung \(\alpha_{\rm{S}}\) hängt vom Abstand der Elementarteilchen ab und liegt im Bereich von \(0{,}1\) bis \(0{,}5\).
  • Der Kopplungsparameter der schwachen Wechselwirkung ist\({\alpha _{\rm{W}}} \approx \frac{1}{{30}}\) und der elektromagnetischen Wechselwirkung \({\alpha _{\rm{em}}} \approx \frac{1}{{137}}\).

Zum Artikel
Grundwissen

  • Der Kopplungsparameter bestimmt, wie stark und wie wahrscheinlich eine Wechselwirkung ist.
  • Für jede der vier fundamentalen Wechselwirkungen gibt es einen Kopplungsparameter \(\alpha\).
  • Der Kopplungsparameter der starken Wechselwirkung \(\alpha_{\rm{S}}\) hängt vom Abstand der Elementarteilchen ab und liegt im Bereich von \(0{,}1\) bis \(0{,}5\).
  • Der Kopplungsparameter der schwachen Wechselwirkung ist\({\alpha _{\rm{W}}} \approx \frac{1}{{30}}\) und der elektromagnetischen Wechselwirkung \({\alpha _{\rm{em}}} \approx \frac{1}{{137}}\).

Zum Artikel Zu den Aufgaben

Botenteilchen

Grundwissen

  • Vermittler der starken Wechselwirkung sind 8 verschiedene Gluonen, die verschiedene Kombinationen an Farbladungen tragen.
  • Vermittler der schwachen Wechselwirkung sind \(W^+\)-, \(W^-\)- und \(Z\)-Bosonen, die eine sehr kurze Lebensdauer und eine sehr geringe Reichweite von ca. \(2\cdot 10^{-18}\,\rm{m}\) haben.
  • Photonen sind die Botenteilchen der elektromagnetischen Wechselwirkung, besitzen keinerlei Ladung und haben daher eine unendliche Reichweite.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Vermittler der starken Wechselwirkung sind 8 verschiedene Gluonen, die verschiedene Kombinationen an Farbladungen tragen.
  • Vermittler der schwachen Wechselwirkung sind \(W^+\)-, \(W^-\)- und \(Z\)-Bosonen, die eine sehr kurze Lebensdauer und eine sehr geringe Reichweite von ca. \(2\cdot 10^{-18}\,\rm{m}\) haben.
  • Photonen sind die Botenteilchen der elektromagnetischen Wechselwirkung, besitzen keinerlei Ladung und haben daher eine unendliche Reichweite.

Zum Artikel Zu den Aufgaben

Ladungen

Grundwissen

  • Ladungen sind fundamentale und unveränderliche Eigenschaften eines Teilchens, sie können nur bestimmte Werte annehmen (sind gequantelt), bleiben erhalten und bestimmen, ob ein Teilchen einer bestimmten Wechselwirkung unterliegt.
  • Es gibt sechs verschiedene Farbladungen: rot, grün, blau, anti-rot, anti-grün und anti-blau und die Einordnung der Elementarteilchen geschieht in einem zweidimensionalen Farbgitter.
  • Die schwache Ladung hat das Formelzeichen \(I\) und kann ganzzahlige Vielfache von \(\frac{1}{2}\) als Werte annehmen und in Vielteilchensystemen addieren sich die Ladungen der Elementarteilchen zahlenmäßig..
  •  Die Größe "elektrische Ladung" hat ganzzahlige Vielfache von \(\frac{1}{3}\) als Werte und in Vielteilchensystemen addieren sich die Ladungen der Elementarteilchen zahlenmäßig.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ladungen sind fundamentale und unveränderliche Eigenschaften eines Teilchens, sie können nur bestimmte Werte annehmen (sind gequantelt), bleiben erhalten und bestimmen, ob ein Teilchen einer bestimmten Wechselwirkung unterliegt.
  • Es gibt sechs verschiedene Farbladungen: rot, grün, blau, anti-rot, anti-grün und anti-blau und die Einordnung der Elementarteilchen geschieht in einem zweidimensionalen Farbgitter.
  • Die schwache Ladung hat das Formelzeichen \(I\) und kann ganzzahlige Vielfache von \(\frac{1}{2}\) als Werte annehmen und in Vielteilchensystemen addieren sich die Ladungen der Elementarteilchen zahlenmäßig..
  •  Die Größe "elektrische Ladung" hat ganzzahlige Vielfache von \(\frac{1}{3}\) als Werte und in Vielteilchensystemen addieren sich die Ladungen der Elementarteilchen zahlenmäßig.

Zum Artikel Zu den Aufgaben

Geometrie der Ellipse

Grundwissen

  • Planetenbahnen können nach KEPLER sehr gut als Ellipsen beschrieben werden.
  • Ellipsen haben zwei Brennpunkte.
  • Wichtige Begriffe sind die große Halbachse \(a\), die kleine Halbachse \(b\) und die Exzentrizität \(\varepsilon\).

Zum Artikel
Grundwissen

  • Planetenbahnen können nach KEPLER sehr gut als Ellipsen beschrieben werden.
  • Ellipsen haben zwei Brennpunkte.
  • Wichtige Begriffe sind die große Halbachse \(a\), die kleine Halbachse \(b\) und die Exzentrizität \(\varepsilon\).

Zum Artikel Zu den Aufgaben

Wechselwirkungen

Grundwissen

  • Die starke Wechselwirkung wird von der sog. Farbladung bestimmt und Botenteilchen der starken Wechselwirkung sind die Gluonen.
  • Der schwachen Wechselwirkung unterliegen nur Teilchen mit schwacher Ladung. Botenteilchen sind die W- und Z-Bosonen.
  • Der elektromagnetischen Wechselwirkung unterliegen nur geladene Teilchen. Botenteilchen ist das Photon.

Zum Artikel
Grundwissen

  • Die starke Wechselwirkung wird von der sog. Farbladung bestimmt und Botenteilchen der starken Wechselwirkung sind die Gluonen.
  • Der schwachen Wechselwirkung unterliegen nur Teilchen mit schwacher Ladung. Botenteilchen sind die W- und Z-Bosonen.
  • Der elektromagnetischen Wechselwirkung unterliegen nur geladene Teilchen. Botenteilchen ist das Photon.

Zum Artikel Zu den Aufgaben

Stromrichtige und Spannungsrichtige Messung

Grundwissen

  • Messgeräte können die genaue Messung von Größen beeinflussen.
  • Je nachdem, ob die die Stromstärke \(I\) oder die Spannung \(U\) besonders genau messen möchtest, musst du deine Messgeräte schalten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Messgeräte können die genaue Messung von Größen beeinflussen.
  • Je nachdem, ob die die Stromstärke \(I\) oder die Spannung \(U\) besonders genau messen möchtest, musst du deine Messgeräte schalten.

Zum Artikel Zu den Aufgaben

p-n-Übergang - Halbleiterdiode

Grundwissen

 

Joachim Herz Stiftung
  • Halbleiterdioden bestehen aus zwei Schichten: einem p-Halbleiter und einem n-Halbleiter
  • Dioden besitzen eine Durchlassrichtung und eine Sperrrichtung
  • Liegt der Pluspol an der p-Schicht, so ist die Diode in Durchlassrichtung geschaltet

Zum Artikel Zu den Aufgaben
Grundwissen

 

Joachim Herz Stiftung
  • Halbleiterdioden bestehen aus zwei Schichten: einem p-Halbleiter und einem n-Halbleiter
  • Dioden besitzen eine Durchlassrichtung und eine Sperrrichtung
  • Liegt der Pluspol an der p-Schicht, so ist die Diode in Durchlassrichtung geschaltet

Zum Artikel Zu den Aufgaben

Starke Wechselwirkung

Grundwissen

  • Der starken Wechselwirkung unterliegen nur Teilchen, die eine Farbladung besitzen, also auf Quarks. Es gibt 6 verschiedene Farbladungen: rot, grün, blau, anti-rot, anti-grün und anti-blau.
  • Die Botenteilchen der starken Wechselwirkung sind die acht Gluonen. Diese tragen selbst unterschiedliche Farbladungen.
  • Es gibt keine freien Quarks, sie finden sich immer in Zweier- oder Dreiergruppen.

Zum Artikel
Grundwissen

  • Der starken Wechselwirkung unterliegen nur Teilchen, die eine Farbladung besitzen, also auf Quarks. Es gibt 6 verschiedene Farbladungen: rot, grün, blau, anti-rot, anti-grün und anti-blau.
  • Die Botenteilchen der starken Wechselwirkung sind die acht Gluonen. Diese tragen selbst unterschiedliche Farbladungen.
  • Es gibt keine freien Quarks, sie finden sich immer in Zweier- oder Dreiergruppen.

Zum Artikel Zu den Aufgaben

Schwache Wechselwirkung

Grundwissen

  • Nur Teilchen mit einer von Null verschiedenen schwachen Ladung unterliegen der schwachen Wechselwirkung.
  • Die schwache Wechselwirkung wird durch Absorption und Emission von \(W^+\)-, \(W^-\), und \(Z\)-Bosonen vermittelt.
  • Alle Materieteilchen besitzen eine schwache Ladung von \(I=+\frac{1}{2}\) oder \(I=-\frac{1}{2}\). In ihrer Darstellung ist das Vorzeichen oft über die Ausrichtung der Spitze bzw. Rundung codiert.
  • Von den Botenteilchen haben nur die \(W\)-Bosonen eine schwache Ladung von \(I=\pm 1\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Nur Teilchen mit einer von Null verschiedenen schwachen Ladung unterliegen der schwachen Wechselwirkung.
  • Die schwache Wechselwirkung wird durch Absorption und Emission von \(W^+\)-, \(W^-\), und \(Z\)-Bosonen vermittelt.
  • Alle Materieteilchen besitzen eine schwache Ladung von \(I=+\frac{1}{2}\) oder \(I=-\frac{1}{2}\). In ihrer Darstellung ist das Vorzeichen oft über die Ausrichtung der Spitze bzw. Rundung codiert.
  • Von den Botenteilchen haben nur die \(W\)-Bosonen eine schwache Ladung von \(I=\pm 1\).

Zum Artikel Zu den Aufgaben

Elektromagnetische Wechselwirkung

Grundwissen

  • Nur elektrische geladene Teilchen unterliegen der elektromagnetischen Wechselwirkung, die durch Absorption und Emission von Photonen vermittelt wird.
  • Die elektrische Ladung eines Elementarteilchens kann als Wert nur ganzzahlige Vielfache von \(\frac{1}{3}\) annehmen.
  • Die elektromagnetische Wechselwirkung hat eine unendlich große Reichweite, aber ihre Kraft nimmt quadratisch mit dem Abstand der elektrisch geladenen Teilchen ab.

Zum Artikel
Grundwissen

  • Nur elektrische geladene Teilchen unterliegen der elektromagnetischen Wechselwirkung, die durch Absorption und Emission von Photonen vermittelt wird.
  • Die elektrische Ladung eines Elementarteilchens kann als Wert nur ganzzahlige Vielfache von \(\frac{1}{3}\) annehmen.
  • Die elektromagnetische Wechselwirkung hat eine unendlich große Reichweite, aber ihre Kraft nimmt quadratisch mit dem Abstand der elektrisch geladenen Teilchen ab.

Zum Artikel Zu den Aufgaben

Leuchtdioden (LED) - Einführung

Grundwissen

  • Leuchtdioden sind Halbleiterdioden, die Licht , Infrarotstrahlung oder Ultraviolettstrahlung aussenden.
  • LEDs müssen in Durchlassrichtung geschaltet werden, damit sie leuchten.
  • LEDs sind effiziente Lichtquellen mit geringem Energiebedarf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Leuchtdioden sind Halbleiterdioden, die Licht , Infrarotstrahlung oder Ultraviolettstrahlung aussenden.
  • LEDs müssen in Durchlassrichtung geschaltet werden, damit sie leuchten.
  • LEDs sind effiziente Lichtquellen mit geringem Energiebedarf.

Zum Artikel Zu den Aufgaben

Beugung und Interferenz von Elektronen an Kristallgittern

Grundwissen

  • De BROGLIEs theoretische Überlegungen zur Wellennatur von Materie konnten 1927 von den amerikanischen Physikern Clinton Joseph DAVISSON und Lester Halbert GERMER sowie unabhängig davon vom englischen Physiker George Paget THOMSON durch die Elektronenbeugung an Kristallen bestätigt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • De BROGLIEs theoretische Überlegungen zur Wellennatur von Materie konnten 1927 von den amerikanischen Physikern Clinton Joseph DAVISSON und Lester Halbert GERMER sowie unabhängig davon vom englischen Physiker George Paget THOMSON durch die Elektronenbeugung an Kristallen bestätigt werden.

Zum Artikel Zu den Aufgaben

Beugung und Interferenz von Elektronen außerhalb von Materie

Grundwissen

  • Die Wellennatur von Materie konnte zwischen 1955 und 1957 von MÖLLENSTEDT und seinen Schülern DÜKER und JÖNSSON auch beim Durchgang von Elektronen durch ein elektrisches Biprisma und sogar durch einen materiellen Doppelspalt bestätigt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Wellennatur von Materie konnte zwischen 1955 und 1957 von MÖLLENSTEDT und seinen Schülern DÜKER und JÖNSSON auch beim Durchgang von Elektronen durch ein elektrisches Biprisma und sogar durch einen materiellen Doppelspalt bestätigt werden.

Zum Artikel Zu den Aufgaben

Silizium-Solarzellen

Grundwissen

  • Klassische Silizium-Solarzellen bestehen aus einer n-dotierten und einer p-dotierten Schicht. Am Übergang bildet sich eine sog. Raumladungszone.
  • Einfallendes Licht löst in dieser Raumladungszone Elektronen von Atomen (innerer Fotoeffekt).
  • Der Wirkungsgrad von Solarzellen liegt aktuell bei 13% - 48%.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Klassische Silizium-Solarzellen bestehen aus einer n-dotierten und einer p-dotierten Schicht. Am Übergang bildet sich eine sog. Raumladungszone.
  • Einfallendes Licht löst in dieser Raumladungszone Elektronen von Atomen (innerer Fotoeffekt).
  • Der Wirkungsgrad von Solarzellen liegt aktuell bei 13% - 48%.

Zum Artikel Zu den Aufgaben

Bewegung der Himmelskörper

Grundwissen

  • Die Himmelskörper ruhen nicht, sondern sie befinden sich in einer oder mehreren Drehbewegungen.

Zum Artikel
Grundwissen

  • Die Himmelskörper ruhen nicht, sondern sie befinden sich in einer oder mehreren Drehbewegungen.

Zum Artikel Zu den Aufgaben