Direkt zum Inhalt
Suchergebnisse 481 - 506 von 506

Dosimetrie und Dosiseinheiten

Grundwissen

Zur Beschreibung der biologischen Wirkung von ionisierender Strahlung führt man den Begriff der Dosis ein. Dabei unterscheidet man verschiedene Dosisarten.

  • Die Energiedosis \(D\), die ein Körper durch ionisierende Strahlung erhält, ist der Quotient aus der von dem Körper absorbierten Strahlungsenergie \(E\) und der Masse \(m\) des Körpers: \(D=\frac{E}{m}\). Die Energiedosis ist Grundlage der Dosimetrie im Strahlenschutz.
  • Die Ionendosis \(J\), die ein Körper durch ionisierende Strahlung erhält, ist der Quotient aus der durch Ionisation in dem Körper freiwerdenen elektrischen Ladung \(Q\) gleichen Vorzeichens und der Masse \(m\) des Körpers: \(J=\frac{Q}{m}\).
  • Die Äquivalentdosis \(H\), die ein Körper durch eine Energiedosis einer bestimmten Strahlung erhält, ist das Produkt aus der Energiedosis \(D\) und dem Strahlungswichtungsfaktor \(w_{\rm{R}}\) der Strahlung: \(H=w_{\rm{R}} \cdot D\).
  • Die effektive Dosis \(E\), die ein Organ/Gewebe durch eine Äquivalentdosis erhält, ist das Produkt aus der Äquivalentdosis \(H\) und dem Gewebewichtungsfaktor \(w_{\rm{T}}\) des absorbierenden Organs/Gewebes: \(E=w_{\rm{T}} \cdot H\).

Zum Artikel Zu den Aufgaben
Grundwissen

Zur Beschreibung der biologischen Wirkung von ionisierender Strahlung führt man den Begriff der Dosis ein. Dabei unterscheidet man verschiedene Dosisarten.

  • Die Energiedosis \(D\), die ein Körper durch ionisierende Strahlung erhält, ist der Quotient aus der von dem Körper absorbierten Strahlungsenergie \(E\) und der Masse \(m\) des Körpers: \(D=\frac{E}{m}\). Die Energiedosis ist Grundlage der Dosimetrie im Strahlenschutz.
  • Die Ionendosis \(J\), die ein Körper durch ionisierende Strahlung erhält, ist der Quotient aus der durch Ionisation in dem Körper freiwerdenen elektrischen Ladung \(Q\) gleichen Vorzeichens und der Masse \(m\) des Körpers: \(J=\frac{Q}{m}\).
  • Die Äquivalentdosis \(H\), die ein Körper durch eine Energiedosis einer bestimmten Strahlung erhält, ist das Produkt aus der Energiedosis \(D\) und dem Strahlungswichtungsfaktor \(w_{\rm{R}}\) der Strahlung: \(H=w_{\rm{R}} \cdot D\).
  • Die effektive Dosis \(E\), die ein Organ/Gewebe durch eine Äquivalentdosis erhält, ist das Produkt aus der Äquivalentdosis \(H\) und dem Gewebewichtungsfaktor \(w_{\rm{T}}\) des absorbierenden Organs/Gewebes: \(E=w_{\rm{T}} \cdot H\).

Zum Artikel Zu den Aufgaben

Energiezustände im BOHRschen Atommodell

Grundwissen

  • Durch die Quantenbedingung von BOHR kann die Energie eines Atoms nur bestimmte Werte annehmen.
  • Die Energie, um Wasserstoff aus dem Grundzustand heraus zu ionisieren beträgt \(13{,}6\,\rm{eV}\) (Ionisierungsenergie).
  • Die Gesamtenergie eines Elektrons im Wasserstoffatom gilt \({E_{{\rm{ges}}{\rm{,n}}}} = - R_{\infty} \cdot h \cdot c \cdot \frac{1}{{{n^2}}}\), wobei \(R_{\infty}\) die Rydberg-Konstante ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Durch die Quantenbedingung von BOHR kann die Energie eines Atoms nur bestimmte Werte annehmen.
  • Die Energie, um Wasserstoff aus dem Grundzustand heraus zu ionisieren beträgt \(13{,}6\,\rm{eV}\) (Ionisierungsenergie).
  • Die Gesamtenergie eines Elektrons im Wasserstoffatom gilt \({E_{{\rm{ges}}{\rm{,n}}}} = - R_{\infty} \cdot h \cdot c \cdot \frac{1}{{{n^2}}}\), wobei \(R_{\infty}\) die Rydberg-Konstante ist.

Zum Artikel Zu den Aufgaben

Geschwindigkeitsaddition

Grundwissen

  • Ist \(u\) die Geschwindigkeit eines Körpers im System S und \(v\) die Geschwindigkeit des Systems S' in Bezug auf S und \(u'\) die Geschwindigkeit des Körpers im System S', dann gilt der Zusammenhang \(u = \frac{{u' + v}}{{1 + \frac{{u' \cdot v}}{{{c^2}}}}}\).

 

 

 

Zum Artikel
Grundwissen

  • Ist \(u\) die Geschwindigkeit eines Körpers im System S und \(v\) die Geschwindigkeit des Systems S' in Bezug auf S und \(u'\) die Geschwindigkeit des Körpers im System S', dann gilt der Zusammenhang \(u = \frac{{u' + v}}{{1 + \frac{{u' \cdot v}}{{{c^2}}}}}\).

 

 

 

Zum Artikel Zu den Aufgaben

Parallelschaltung von Widerständen

Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier parallel geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(\frac{1}{R_{12}}=\frac{1}{R_1} +\frac{1}{R_2}\)
  •  Der Gesamtwiderstands einer Parallelschaltung ist stets kleiner als der kleinste Einzelwiderstand eines Astes.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier parallel geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(\frac{1}{R_{12}}=\frac{1}{R_1} +\frac{1}{R_2}\)
  •  Der Gesamtwiderstands einer Parallelschaltung ist stets kleiner als der kleinste Einzelwiderstand eines Astes.

Zum Artikel Zu den Aufgaben

Kran aus der Römerzeit

Aufgabe ( Übungsaufgaben )

Der Kran wurde bereits von den Römern verwendet, um schwere Lasten zu heben und zu versetzen. Die Animation in Abb. 1 zeigt den Aufbau und die…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Der Kran wurde bereits von den Römern verwendet, um schwere Lasten zu heben und zu versetzen. Die Animation in Abb. 1 zeigt den Aufbau und die…

Zur Aufgabe

Quiz Akustische Phänomene

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zum COMPTON-Effekt

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zum Messen mit Strommessgeräten

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zu Strom, Spannung und Widerstand 1

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zum Gravitationsgesetz

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zum Kernaufbau von Atomen

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zur Kernumwandlung

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zum Kondensator

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zur Reibung (allgemein)

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zur scheinbaren Bewegung von Gestirnen

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zur Wärmeausdehnung

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Wesenszug 4: Komplementarität

Grundwissen

  • Bei einer Ortsmessung auf Höhe der Spalte bildet sich beim Doppelspaltexperiment kein Interferenzmuster auf dem Schirm aus.
  • Interferenzmuster und Unterscheidbarkeit der klassisch denkbaren Möglichkeiten schließen sich aus (Komplementarität).

Zum Artikel
Grundwissen

  • Bei einer Ortsmessung auf Höhe der Spalte bildet sich beim Doppelspaltexperiment kein Interferenzmuster auf dem Schirm aus.
  • Interferenzmuster und Unterscheidbarkeit der klassisch denkbaren Möglichkeiten schließen sich aus (Komplementarität).

Zum Artikel Zu den Aufgaben

Brennstäbe (Abitur BY 2019 Ph12-1 A1)

Aufgabe ( Übungsaufgaben )

Die in Kernkraftwerken eingesetzten Brennstäbe sind dünnwandige Rohre, die kleine Uran-Pellets enthalten. Ein frisches Uran-Pellet der Masse…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Die in Kernkraftwerken eingesetzten Brennstäbe sind dünnwandige Rohre, die kleine Uran-Pellets enthalten. Ein frisches Uran-Pellet der Masse…

Zur Aufgabe

Bestimmung der PLANCK-Konstante (Abitur BY 2019 Ph12-1 A2)

Aufgabe ( Übungsaufgaben )

Am 20. Mai 2019 wurde das Ur-Kilogramm „in Rente geschickt“. Die Neudefinition des Kilogramms wurde auf die PLANCK-Konstante \(h\) zurückgeführt,…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Am 20. Mai 2019 wurde das Ur-Kilogramm „in Rente geschickt“. Die Neudefinition des Kilogramms wurde auf die PLANCK-Konstante \(h\) zurückgeführt,…

Zur Aufgabe

Quantenmechanische Systematisierung des Periodensystems

Grundwissen

  • Die Zustände der gebundenen Elektronen eines Atoms werden mit den Quantenzahlen beschrieben.
  • Es gibt vier unterschiedliche Quantenzahlen: Hauptquantenzahl \(n\), Nebenquantenzahl \(l\), magnetische Quantenzahl \(m\) und Spin-Quantenzahl \(s\).
  • Das PAULI-Prinzip besagt, dass in einem Atom niemals zwei Elektronen in allen vier Quantenzahlen übereinstimmen können.

Zum Artikel
Grundwissen

  • Die Zustände der gebundenen Elektronen eines Atoms werden mit den Quantenzahlen beschrieben.
  • Es gibt vier unterschiedliche Quantenzahlen: Hauptquantenzahl \(n\), Nebenquantenzahl \(l\), magnetische Quantenzahl \(m\) und Spin-Quantenzahl \(s\).
  • Das PAULI-Prinzip besagt, dass in einem Atom niemals zwei Elektronen in allen vier Quantenzahlen übereinstimmen können.

Zum Artikel Zu den Aufgaben

Aufbau von Atomkernen

Grundwissen

  • Atomkerne bestehen aus Nukleonen. Dies sind entweder die elektrisch positiven Protonen und elektrische neutralen Neutronen.
  • Die Kernladungs- oder Ordnungszahl \(Z\) gibt die Zahl der Protonen in einem Atomkern an und bestimmt, um welches Element es sich handelt.
  • Jedes Element hat seine feste Kernladungszahl \(Z\), kann aber mehrere Isotope mit unterschiedlicher Neutronenzahlen \(N\) besitzen.
  • Die Nukleonen- oder Massenzahl \(A=Z+N\) gibt die (ungefähre) Masse eines Atomkerns bzw. des ganzen Atoms in der Maßeinheit \(\rm{u}\) an.
  • Zur eindeutigen Identifikation von Atomkernen nutzt man die Schreibweise\[_Z^A X \overset{\wedge}{=} \ _{\rm{Orndnungszahl}}^{\rm{Massenzahl}} \text{Elementsymbol also z.B } _6^{14} \rm{C}\]

Zum Artikel Zu den Aufgaben
Grundwissen

  • Atomkerne bestehen aus Nukleonen. Dies sind entweder die elektrisch positiven Protonen und elektrische neutralen Neutronen.
  • Die Kernladungs- oder Ordnungszahl \(Z\) gibt die Zahl der Protonen in einem Atomkern an und bestimmt, um welches Element es sich handelt.
  • Jedes Element hat seine feste Kernladungszahl \(Z\), kann aber mehrere Isotope mit unterschiedlicher Neutronenzahlen \(N\) besitzen.
  • Die Nukleonen- oder Massenzahl \(A=Z+N\) gibt die (ungefähre) Masse eines Atomkerns bzw. des ganzen Atoms in der Maßeinheit \(\rm{u}\) an.
  • Zur eindeutigen Identifikation von Atomkernen nutzt man die Schreibweise\[_Z^A X \overset{\wedge}{=} \ _{\rm{Orndnungszahl}}^{\rm{Massenzahl}} \text{Elementsymbol also z.B } _6^{14} \rm{C}\]

Zum Artikel Zu den Aufgaben

Leiter und Nichtleiter

Grundwissen

  • Materialien können grob in zwei Kategorien eingeteilt werden: Leiter (z.B. Metalle) und Nichtleiter (z.B. Kunststoffe).
  • Ob ein Material Strom gut oder schlecht leitet kannst du mit einer Testschaltung prüfen.
  • Je mehr Salz im Wasser gelöst ist, desto besser leitet Wasser Strom.
  • Die meisten Gase leiten Strom nicht.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Materialien können grob in zwei Kategorien eingeteilt werden: Leiter (z.B. Metalle) und Nichtleiter (z.B. Kunststoffe).
  • Ob ein Material Strom gut oder schlecht leitet kannst du mit einer Testschaltung prüfen.
  • Je mehr Salz im Wasser gelöst ist, desto besser leitet Wasser Strom.
  • Die meisten Gase leiten Strom nicht.

Zum Artikel Zu den Aufgaben

Elektrische Ladung

Grundwissen

  • Die Einheit der elektrischen Ladung, Symbol \(Q\), ist das Coulomb, Symbol \(\rm{C}\).
  • Ein Elektron besitzt die negative Elementarladung: \(q_{\rm{Elektron}}=-e = -1{,}6 \cdot 10^{-19}\,\rm{C}\).

Zum Artikel
Grundwissen

  • Die Einheit der elektrischen Ladung, Symbol \(Q\), ist das Coulomb, Symbol \(\rm{C}\).
  • Ein Elektron besitzt die negative Elementarladung: \(q_{\rm{Elektron}}=-e = -1{,}6 \cdot 10^{-19}\,\rm{C}\).

Zum Artikel Zu den Aufgaben

HALL-Spannung - Formelumstellung

Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um die Berechnung der HALL-Spannung zu lösen musst du häufig die Gleichung \(U_{\rm{H}} = R_{\rm{H}} \cdot \frac{I \cdot B}{d} \)…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um die Berechnung der HALL-Spannung zu lösen musst du häufig die Gleichung \(U_{\rm{H}} = R_{\rm{H}} \cdot \frac{I \cdot B}{d} \)…

Zur Aufgabe

TSS-1R - Mission

Aufgabe ( Übungsaufgaben )

NASA Marshall Space Flight Center (NASA-MSFC) / Public domain Abb. 1 Die Crew der Mission mit dem Fesselsatelliten TSS im…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

NASA Marshall Space Flight Center (NASA-MSFC) / Public domain Abb. 1 Die Crew der Mission mit dem Fesselsatelliten TSS im…

Zur Aufgabe

Rauchmelder retten Leben (Abitur BY 2020 Ph12-2 A1)

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Vereinfachter Aufbau eines Ionisationsrauchmelders. Rauchmelder sind seit 2018 in bayerischen…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Vereinfachter Aufbau eines Ionisationsrauchmelders. Rauchmelder sind seit 2018 in bayerischen…

Zur Aufgabe