Direkt zum Inhalt
Suchergebnisse 91 - 120 von 135

Abschätzung der Atomgröße (Abitur BY 2007 GK A3-1)

Aufgabe ( Übungsaufgaben )

Bei der Durchführung des sogenannten Ölfleckversuchs verwendet man ein Gemisch aus Ölsäure (C17H33COOH) und Leichtbenzin, wobei der Volumenanteil der…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Bei der Durchführung des sogenannten Ölfleckversuchs verwendet man ein Gemisch aus Ölsäure (C17H33COOH) und Leichtbenzin, wobei der Volumenanteil der…

Zur Aufgabe

Tomatenrot (Abitur BY 2018 Ph12-1 A1)

Aufgabe ( Übungsaufgaben )

Die charakteristische rote Farbe von Tomaten beruht hauptsächlich auf der Eigenschaft des Moleküls Lycopen, Licht bestimmter Wellenlängen zu…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Die charakteristische rote Farbe von Tomaten beruht hauptsächlich auf der Eigenschaft des Moleküls Lycopen, Licht bestimmter Wellenlängen zu…

Zur Aufgabe

Spektrum von Antiwasserstoff (Abitur BY 2018 Ph12-1 A1)

Aufgabe ( Übungsaufgaben )

Im Jahre 2016 wurde am Forschungszentrum CERN erstmals das Spektrum eines Antimaterieatoms analysiert. Im Rahmen der Messgenauigkeit wurde am Übergang…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Im Jahre 2016 wurde am Forschungszentrum CERN erstmals das Spektrum eines Antimaterieatoms analysiert. Im Rahmen der Messgenauigkeit wurde am Übergang…

Zur Aufgabe

Eine kurze Geschichte der Streuversuche

Weblink

Auf der sehr gut verständlichen und hervorragend gestalteten Site: "Welt der Physik" der Deutschen Physikalischen Gesellschaft (DPG) kannst du einen Übersichtsartikel über die Geschichte der Streuversuche nachlesen.

Zum externen Weblink
Weblink

Auf der sehr gut verständlichen und hervorragend gestalteten Site: "Welt der Physik" der Deutschen Physikalischen Gesellschaft (DPG) kannst du einen Übersichtsartikel über die Geschichte der Streuversuche nachlesen.

Zum externen Weblink

1. Platz LEIFIphysik: Quantenphysik: Der Tunneleffekt

Weblink

Ein filmischer Beitrag von "Studio 16" vom Carl-Friedrich-von-Weizsäcker-Gymnasium Barmstedt/Rantzau für den LEIFIphysik-Videowettbewerb.

Zur Übersicht Zum externen Weblink
Weblink

Ein filmischer Beitrag von "Studio 16" vom Carl-Friedrich-von-Weizsäcker-Gymnasium Barmstedt/Rantzau für den LEIFIphysik-Videowettbewerb.

Zur Übersicht Zum externen Weblink

Atomphysik für die Sekundarstufe I

Weblink

Eine 9 Stunden umfassende Unterrichtseinheit zur Atomvorstellung für die Sekundarstufe I. Sie wurde am Faust-Gymnasium in Staufen entwickelt und in zehnten Klassen erprobt.

Zur Übersicht Zum externen Weblink
Weblink

Eine 9 Stunden umfassende Unterrichtseinheit zur Atomvorstellung für die Sekundarstufe I. Sie wurde am Faust-Gymnasium in Staufen entwickelt und in zehnten Klassen erprobt.

Zur Übersicht Zum externen Weblink

Potentialtopf-Modell

Weblink

Dieses downloadbare (Windows-)Programm zeigt, wie sich ein Elektron verhält, das in einen sehr kleinen würfelförmigen Kasten eingesperrt wird.
In der Quantenphysik wird dieser Kasten als dreidimensionaler Potentialtopf interpretiert, in dem das Elektron nur ganz bestimmte Energieniveaus annehmen kann. Außerdem darf das Elektron sich nur in bestimmten Raumbereichen aufhalten. Etwas physikalischer formuliert: Die Energie des Elektrons innerhalb des Potentialtopfes ist gequantelt und sein Aufenthaltsbereich ist auf Orbitale beschränkt. Dieses Verhalten des Elektrons ergibt sich aus der Schrödinger-Gleichung. Die Simulation erlaubt die Eingabe verschiedener Quantenzahlen. Die Aufenthaltswahrscheinlichkeit des Elektrons (Orbital) wird durch die Dichte von Punktewolken dargestellt. Der Würfel lässt sich drehen, so dass die Lage der einzelnen Orbitale gut sichtbar wird. Außerdem kann man die Energie des Elektrons bei vorgegebener Größe des Kastens ablesen.

Zum externen Weblink
Weblink

Dieses downloadbare (Windows-)Programm zeigt, wie sich ein Elektron verhält, das in einen sehr kleinen würfelförmigen Kasten eingesperrt wird.
In der Quantenphysik wird dieser Kasten als dreidimensionaler Potentialtopf interpretiert, in dem das Elektron nur ganz bestimmte Energieniveaus annehmen kann. Außerdem darf das Elektron sich nur in bestimmten Raumbereichen aufhalten. Etwas physikalischer formuliert: Die Energie des Elektrons innerhalb des Potentialtopfes ist gequantelt und sein Aufenthaltsbereich ist auf Orbitale beschränkt. Dieses Verhalten des Elektrons ergibt sich aus der Schrödinger-Gleichung. Die Simulation erlaubt die Eingabe verschiedener Quantenzahlen. Die Aufenthaltswahrscheinlichkeit des Elektrons (Orbital) wird durch die Dichte von Punktewolken dargestellt. Der Würfel lässt sich drehen, so dass die Lage der einzelnen Orbitale gut sichtbar wird. Außerdem kann man die Energie des Elektrons bei vorgegebener Größe des Kastens ablesen.

Zum externen Weblink

Tunneleffekt

Weblink

Dieses downloadbare (Windows-)Programm löst die eindimensionale, stationäre Schrödingergleichung für den Aufenthalt eines Elektrons in einem Linearen Potentialtopf auf numerischem Weg.
Dabei lassen sich drei Szenarien einstellen:
1. Linearer Potentialtopf mit unendlich hohen Wänden
2. Linearer Potentialtopf mit einer niedrigen, aber breiten Wand
3. Linearer Potentialtopf mit einer niedrigen und schmalen Wand.
Die Höhe (Potentielle Energie) und die Breite der Wand lassen sich bei 2. und 3. variieren.
Durch Eingabe der Gesamtenergie des Elektrons lassen sich Wellenfunktionen finden, die innerhalb der Wand gegen Null konvergieren. Nur diese Wellenfunktionen sind physikalisch sinnvoll und beschreiben das Eindringen in die Wand bzw. das Durchtunneln der Wand im Sinne des quantenmechanischen Effekts richtig.

Zum externen Weblink
Weblink

Dieses downloadbare (Windows-)Programm löst die eindimensionale, stationäre Schrödingergleichung für den Aufenthalt eines Elektrons in einem Linearen Potentialtopf auf numerischem Weg.
Dabei lassen sich drei Szenarien einstellen:
1. Linearer Potentialtopf mit unendlich hohen Wänden
2. Linearer Potentialtopf mit einer niedrigen, aber breiten Wand
3. Linearer Potentialtopf mit einer niedrigen und schmalen Wand.
Die Höhe (Potentielle Energie) und die Breite der Wand lassen sich bei 2. und 3. variieren.
Durch Eingabe der Gesamtenergie des Elektrons lassen sich Wellenfunktionen finden, die innerhalb der Wand gegen Null konvergieren. Nur diese Wellenfunktionen sind physikalisch sinnvoll und beschreiben das Eindringen in die Wand bzw. das Durchtunneln der Wand im Sinne des quantenmechanischen Effekts richtig.

Zum externen Weblink

Schrödingergleichung und H-Atom

Weblink

Dieses downloadbare (Windows-)Programm löst die stationäre Schrödingergleichung des radialen Anteils der Wasserstoffwellenfunktion auf numerischen Weg und stellt die Wahrscheinlichkeitsdichten, Aufenthaltswahrscheinlichkeiten und Orbitale des Elektrons grafisch dar. Der Wert für die Gesamtenergie des Elektrons kann vom Anwender mit Hilfe von Schiebereglern beliebig gewählt werden. Der Drehimpuls darf die Werte 0,1,2,3 und 4 annehmen. Dass Programm liefert dann durch Lösen der Differentialgleichung eine entsprechende Wellenfunktion. Aber nur bei wenigen, ganz speziellen Energiewerten ergeben sich Funktionen, die gegen Null konvergieren und damit physikalisch sinnvolle Lösungen der Differentialgleichung darstellen. Diese Energiewerte werden Eigenwerte der Differentialgleichung genannt und entsprechen den vom Bohrschen Atommodell bekannten Energien des Wasserstoff-Termschemas.

Zur Übersicht Zum externen Weblink
Weblink

Dieses downloadbare (Windows-)Programm löst die stationäre Schrödingergleichung des radialen Anteils der Wasserstoffwellenfunktion auf numerischen Weg und stellt die Wahrscheinlichkeitsdichten, Aufenthaltswahrscheinlichkeiten und Orbitale des Elektrons grafisch dar. Der Wert für die Gesamtenergie des Elektrons kann vom Anwender mit Hilfe von Schiebereglern beliebig gewählt werden. Der Drehimpuls darf die Werte 0,1,2,3 und 4 annehmen. Dass Programm liefert dann durch Lösen der Differentialgleichung eine entsprechende Wellenfunktion. Aber nur bei wenigen, ganz speziellen Energiewerten ergeben sich Funktionen, die gegen Null konvergieren und damit physikalisch sinnvolle Lösungen der Differentialgleichung darstellen. Diese Energiewerte werden Eigenwerte der Differentialgleichung genannt und entsprechen den vom Bohrschen Atommodell bekannten Energien des Wasserstoff-Termschemas.

Zur Übersicht Zum externen Weblink

Röntgenspektren

Weblink

Die Strahlung von Röntgenröhren kann sehr unterschiedlich ausfallen. Die Spektren sind abhängig vom Anodenmaterial der Röhre, der Beschleunigungsspannung, dem Röhrenstrom und den verwendeten Filtermaterialien.

Dieses downloadbare (Windows-)Programm berechnet Röntgenspektren unter Berücksichtigung all dieser Faktoren. Dabei werden die Spektren so dargestellt, als wären sie durch die Drehkristallmethode aufgenommen worden. Das Spektrum erster Ordnung wird bei diesem Verfahren stets von den Spektren höherer Beugungsordnungen überlagert. Das Programm ermöglicht aber auch die Übertragung der Drehkristall-Spektren auf eine Wellenlängen- oder Energieskala, wobei die höheren Beugungsordnungen dann unberücksichtigt bleiben.

Zur Übersicht Zum externen Weblink
Weblink

Die Strahlung von Röntgenröhren kann sehr unterschiedlich ausfallen. Die Spektren sind abhängig vom Anodenmaterial der Röhre, der Beschleunigungsspannung, dem Röhrenstrom und den verwendeten Filtermaterialien.

Dieses downloadbare (Windows-)Programm berechnet Röntgenspektren unter Berücksichtigung all dieser Faktoren. Dabei werden die Spektren so dargestellt, als wären sie durch die Drehkristallmethode aufgenommen worden. Das Spektrum erster Ordnung wird bei diesem Verfahren stets von den Spektren höherer Beugungsordnungen überlagert. Das Programm ermöglicht aber auch die Übertragung der Drehkristall-Spektren auf eine Wellenlängen- oder Energieskala, wobei die höheren Beugungsordnungen dann unberücksichtigt bleiben.

Zur Übersicht Zum externen Weblink

Schrödingers Katze flippt aus

Weblink

Katze und Uhu erklären die grundlegenden Quanteneffekte. Der Helmholtz-Wissenschaftscomic erscheint einmal im Monat.

Zum externen Weblink
Weblink

Katze und Uhu erklären die grundlegenden Quanteneffekte. Der Helmholtz-Wissenschaftscomic erscheint einmal im Monat.

Zum externen Weblink

Spektren

Grundwissen

  • Untersucht man Licht mit Hilfe eines Spektralapparats, so erhält man ein sogenanntes Spektrum. Aus diesen Spektren kann man vielfältige Informationen über den Aufbau von Atomen gewinnen.
  • Das Spektrum von Licht, das ein heißer Körper aussendet, bezeichnet man als Emissionsspektrum. Beim Spektrum einer Glühlampe gehen die einzelnen Farben fließend ineinander über. Man spricht von einem kontinuierlichen Emissionsspektrum. Das Spektrum eines heißen Gases dagegen besteht aus einzelnen, voneinander getrennten dünnen Linien. Man spricht von einem diskreten Emissionsspektrum (Linienspektrum).
  • Das Spektrum von ursprünglich "weißem" Licht, das einen Gegenstand wie z.B. ein heißes Gas durchlaufen hat, bezeichnet man als Absorptionsspektrum. Absorptionsspektren sind durch dunkle Linien im kontinuierlichen Spektrum des "weißen" Lichts gekennzeichnet.
  • Die Lage der Spektrallinien in einem Spektrum ist charakteristisch für das Atom bzw. Molekül.

Zum Artikel
Grundwissen

  • Untersucht man Licht mit Hilfe eines Spektralapparats, so erhält man ein sogenanntes Spektrum. Aus diesen Spektren kann man vielfältige Informationen über den Aufbau von Atomen gewinnen.
  • Das Spektrum von Licht, das ein heißer Körper aussendet, bezeichnet man als Emissionsspektrum. Beim Spektrum einer Glühlampe gehen die einzelnen Farben fließend ineinander über. Man spricht von einem kontinuierlichen Emissionsspektrum. Das Spektrum eines heißen Gases dagegen besteht aus einzelnen, voneinander getrennten dünnen Linien. Man spricht von einem diskreten Emissionsspektrum (Linienspektrum).
  • Das Spektrum von ursprünglich "weißem" Licht, das einen Gegenstand wie z.B. ein heißes Gas durchlaufen hat, bezeichnet man als Absorptionsspektrum. Absorptionsspektren sind durch dunkle Linien im kontinuierlichen Spektrum des "weißen" Lichts gekennzeichnet.
  • Die Lage der Spektrallinien in einem Spektrum ist charakteristisch für das Atom bzw. Molekül.

Zum Artikel Zu den Aufgaben

Atommodell von BOHR

Grundwissen

  • BOHR versucht die die zentralen Probleme des Rutherford-Modells (Stabilität und quantenhafte Emission und Absorption) mit drei Postulaten zu lösen.
  • Die mit den drei Postulaten verbundene Vorstellung um den Kern kreisender Elektronen ist jedoch nicht haltbar!

Zum Artikel Zu den Aufgaben
Grundwissen

  • BOHR versucht die die zentralen Probleme des Rutherford-Modells (Stabilität und quantenhafte Emission und Absorption) mit drei Postulaten zu lösen.
  • Die mit den drei Postulaten verbundene Vorstellung um den Kern kreisender Elektronen ist jedoch nicht haltbar!

Zum Artikel Zu den Aufgaben

Gesetz von MOSELEY

Grundwissen

  • Das Gesetz von MOSELEY beschreibt einen Zusammenhang zwischen der Wellenlänge der \(K_{\alpha}\)-Strahlung und der Ordnungszahl \(Z\) des Anodenmaterials.
  • Das Gesetz von MOSELEY lautet \(\frac{1}{{{\lambda _{{K_{\alpha}}}}}} = {\left( {Z - 1} \right)^2} \cdot {R_\infty } \cdot \frac{3}{4}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Gesetz von MOSELEY beschreibt einen Zusammenhang zwischen der Wellenlänge der \(K_{\alpha}\)-Strahlung und der Ordnungszahl \(Z\) des Anodenmaterials.
  • Das Gesetz von MOSELEY lautet \(\frac{1}{{{\lambda _{{K_{\alpha}}}}}} = {\left( {Z - 1} \right)^2} \cdot {R_\infty } \cdot \frac{3}{4}\)

Zum Artikel Zu den Aufgaben

Bestimmung der AVOGADRO-Konstante durch RÖNTGEN-Spektroskopie

Grundwissen

  • Kennst du die Dichte, die Struktur und den Aufbau (Netzebenenabstand) eines Kristalls, so kannst du die AVOGADRO-Konstante bestimmen
  • Den Netzebenenabstand eines Einkristalls bestimmt man mittels RÖNTGEN-Spektroskopie
  • Die Elementarzelle eines einfachen kubischen Einkristalls ist ein Würfel. Jeder Elementarzelle wird hier genau ein Teilchen zugeordnet.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Kennst du die Dichte, die Struktur und den Aufbau (Netzebenenabstand) eines Kristalls, so kannst du die AVOGADRO-Konstante bestimmen
  • Den Netzebenenabstand eines Einkristalls bestimmt man mittels RÖNTGEN-Spektroskopie
  • Die Elementarzelle eines einfachen kubischen Einkristalls ist ein Würfel. Jeder Elementarzelle wird hier genau ein Teilchen zugeordnet.

Zum Artikel Zu den Aufgaben

Atomare Größen

Grundwissen

  • Die absolute Atommasse \(m_{\rm{A}}\left(X\right)\) ist die Masse eines Atoms in \(\rm{kg}\).
  • Die Atomare Masseneinheit u hat den Wert \(1{,}66054 \cdot {10^{ - 27}}\,\rm{kg}\).
  • \(1\,\rm{mol}\) eines Stoffes besteht aus \(6{,}02214 \cdot {{10}^{23}}\) Einzelteilchen.
  • Die AVOGADRO-Konstante \(N_A\) beträgt \(6{,}02214\cdot 10^{23}\,\rm{mol}^{-1}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die absolute Atommasse \(m_{\rm{A}}\left(X\right)\) ist die Masse eines Atoms in \(\rm{kg}\).
  • Die Atomare Masseneinheit u hat den Wert \(1{,}66054 \cdot {10^{ - 27}}\,\rm{kg}\).
  • \(1\,\rm{mol}\) eines Stoffes besteht aus \(6{,}02214 \cdot {{10}^{23}}\) Einzelteilchen.
  • Die AVOGADRO-Konstante \(N_A\) beträgt \(6{,}02214\cdot 10^{23}\,\rm{mol}^{-1}\).

Zum Artikel Zu den Aufgaben

Bremsstrahlung

Grundwissen

  • In der Anode der Röntgenröhre werden die auftreffenden schnellen Elektronen stark abgebremst. Dabei entsteht die Bremsstrahlung.
  • Die Elektronen werden im Anodenmaterial je nach Abstand zu einem Kern unterschiedlich stark beschleunigt, entsprechend enthält das Spektrum der Bremsstrahlung alle Photonenenergien bis zum Höchstwert.
  • Die Bremsstrahlung einer Röntgenröhre ist ein kontinuierliches Spektrum. Die maximale Photonenenergie bzw. die untere Grenzwellenlänge der Photonen wird dabei von der Beschleunigungsspannung bestimmt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In der Anode der Röntgenröhre werden die auftreffenden schnellen Elektronen stark abgebremst. Dabei entsteht die Bremsstrahlung.
  • Die Elektronen werden im Anodenmaterial je nach Abstand zu einem Kern unterschiedlich stark beschleunigt, entsprechend enthält das Spektrum der Bremsstrahlung alle Photonenenergien bis zum Höchstwert.
  • Die Bremsstrahlung einer Röntgenröhre ist ein kontinuierliches Spektrum. Die maximale Photonenenergie bzw. die untere Grenzwellenlänge der Photonen wird dabei von der Beschleunigungsspannung bestimmt.

Zum Artikel Zu den Aufgaben

Periodentafel der Elemente

Grundwissen

  • Die Struktur im Periodensystem der Elemente legen Beobachtungen hinsichtlich der Ionisierungsenergie und des Molvolumens nahe.
  • Die Anordnung der Elemente im Periodensystem erfolgt nach ihrer Ordnungszahl (Kernladungszahl) \(Z\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Struktur im Periodensystem der Elemente legen Beobachtungen hinsichtlich der Ionisierungsenergie und des Molvolumens nahe.
  • Die Anordnung der Elemente im Periodensystem erfolgt nach ihrer Ordnungszahl (Kernladungszahl) \(Z\).

Zum Artikel Zu den Aufgaben

Atomaufbau

Grundwissen

  • Modelle über den Atomaufbau haben sich ständig weiterentwickelt.
  • Ein Atom besteht aus einem sehr kleinen Atomkern und einer Hülle.
  • Der Atomkern besteht aus Protonen und Neutronen. In der Atomhülle halten sich die Elektronen auf.
  • Protonen und Neutronen bestehen wiederum jeweils aus drei Quarks.

Zum Artikel
Grundwissen

  • Modelle über den Atomaufbau haben sich ständig weiterentwickelt.
  • Ein Atom besteht aus einem sehr kleinen Atomkern und einer Hülle.
  • Der Atomkern besteht aus Protonen und Neutronen. In der Atomhülle halten sich die Elektronen auf.
  • Protonen und Neutronen bestehen wiederum jeweils aus drei Quarks.

Zum Artikel Zu den Aufgaben

Linearer Potentialtopf

Grundwissen

  • Im Modell des eindimensionalen linearen unendlichen Potentialtopfs ist die potentielle Energie eines Teilchens im Topf Null, an den Rändern unendlich groß.
  • Die Aufenthaltswahrscheinlichkeit des Teilchens am Topfrand ist Null. Die Eigenschwingungen des Teilchens im Potentialtopf sind daher analog zu stehenden Seilwellen an festen Enden.
  • Mit der Beziehung \(\lambda=\frac{h}{p}\) ergibt sich die Gesamtenergie des Teilchens im Potentialtopf zu \({E_{\rm{ges}}} = \frac{{{h^2}}}{{8 \cdot m \cdot {a^2}}} \cdot {n^2}\)
  • Mit \(n\in \left\{ {1\;;\;2\;;\;3\;;\;...} \right\}\) erhält man die verschiedenen Energieniveaus des Elektrons im Potentialtopf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Modell des eindimensionalen linearen unendlichen Potentialtopfs ist die potentielle Energie eines Teilchens im Topf Null, an den Rändern unendlich groß.
  • Die Aufenthaltswahrscheinlichkeit des Teilchens am Topfrand ist Null. Die Eigenschwingungen des Teilchens im Potentialtopf sind daher analog zu stehenden Seilwellen an festen Enden.
  • Mit der Beziehung \(\lambda=\frac{h}{p}\) ergibt sich die Gesamtenergie des Teilchens im Potentialtopf zu \({E_{\rm{ges}}} = \frac{{{h^2}}}{{8 \cdot m \cdot {a^2}}} \cdot {n^2}\)
  • Mit \(n\in \left\{ {1\;;\;2\;;\;3\;;\;...} \right\}\) erhält man die verschiedenen Energieniveaus des Elektrons im Potentialtopf.

Zum Artikel Zu den Aufgaben

Charakteristische Strahlung

Grundwissen

  • Im kontinuierlichen RÖNTGEN-Spektrum können charakteristische Linien identifiziert werden, die sog. charakteristische Strahlung.
  • Ursache sind Übergänge von Elektronen zwischen spezifischen energetischen Elektronenschalen (K-Schale, L-Schale, M-Schale,...).
  • Die Kα-Linie ist in charakteristischen Spektren besonders stark ausgeprägt und die Lage der Linie im kontinuierlichen Spektrum stoffspezifisch.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im kontinuierlichen RÖNTGEN-Spektrum können charakteristische Linien identifiziert werden, die sog. charakteristische Strahlung.
  • Ursache sind Übergänge von Elektronen zwischen spezifischen energetischen Elektronenschalen (K-Schale, L-Schale, M-Schale,...).
  • Die Kα-Linie ist in charakteristischen Spektren besonders stark ausgeprägt und die Lage der Linie im kontinuierlichen Spektrum stoffspezifisch.

Zum Artikel Zu den Aufgaben

Energiezustände von Atomen

Grundwissen

  • Atome können nur Zustände mit ganz bestimmten, diskreten Energiezuständen annehmen.
  • Entsprechend haben die von einem Atom ausgesendeten Photonen jeweils genau die Energie, die zwischen zwei solchen diskreten Energieniveaus des Atoms liegt.
  • Um ein Atom anzuregen, benötigt es ebenfalls exakt einen solchen "passenden" Energiebetrag.
  • Das Auftreten von Linienspektren kann durch diskrete Energieniveaus erklärt werden.

Zum Artikel
Grundwissen

  • Atome können nur Zustände mit ganz bestimmten, diskreten Energiezuständen annehmen.
  • Entsprechend haben die von einem Atom ausgesendeten Photonen jeweils genau die Energie, die zwischen zwei solchen diskreten Energieniveaus des Atoms liegt.
  • Um ein Atom anzuregen, benötigt es ebenfalls exakt einen solchen "passenden" Energiebetrag.
  • Das Auftreten von Linienspektren kann durch diskrete Energieniveaus erklärt werden.

Zum Artikel Zu den Aufgaben

Klassische Röntgenaufnahmen

Grundwissen

  • Röntgenstrahlen bzw. Röntgenbilder sind in der Medizin wichtige Diagnosewerkzeuge.
  • Dabei wird ausgenutzt, dass unterschiedliches Gewebe und Knochen die Röntgenstrahlung unterschiedlich stark absorbieren (schwächen).
  • Moderne digitale Röntgengeräte senken die durch eine Röntgenaufnahme verursachte Strahlenbelastung stark.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Röntgenstrahlen bzw. Röntgenbilder sind in der Medizin wichtige Diagnosewerkzeuge.
  • Dabei wird ausgenutzt, dass unterschiedliches Gewebe und Knochen die Röntgenstrahlung unterschiedlich stark absorbieren (schwächen).
  • Moderne digitale Röntgengeräte senken die durch eine Röntgenaufnahme verursachte Strahlenbelastung stark.

Zum Artikel Zu den Aufgaben

Wahrscheinlichkeitsverteilungen beim H-Atom

Grundwissen

  • Die Wahrscheinlichkeitsverteilung kann mit verschiedenen Darstellungsformen visualisiert werden.

Zum Artikel
Grundwissen

  • Die Wahrscheinlichkeitsverteilung kann mit verschiedenen Darstellungsformen visualisiert werden.

Zum Artikel Zu den Aufgaben

Warum ist der Laser wichtig für uns?

Grundwissen

  • Laser kommen in verschiedensten Lebensbereichen zum Einsatz: von der Medizin, über die Datenübertragung im Internet bis hin zur Messwertgewinnung für die Wettervorhersage.

Zum Artikel
Grundwissen

  • Laser kommen in verschiedensten Lebensbereichen zum Einsatz: von der Medizin, über die Datenübertragung im Internet bis hin zur Messwertgewinnung für die Wettervorhersage.

Zum Artikel Zu den Aufgaben

Bestandteile eines Lasers

Grundwissen

  • Laser habe drei zentrale Bestandteile: das Lasermedium, die Pumpe und den Resonator.
  • Die Pumpe bringt Energie ins System und sorgt für eine Besetzungsinversion im Lasermedium.
  • Der Resonator, eine Anordnung aus zwei parallelen Spiegeln, verstärkt den Laserstrahl und richtet ihn aus.

Zum Artikel
Grundwissen

  • Laser habe drei zentrale Bestandteile: das Lasermedium, die Pumpe und den Resonator.
  • Die Pumpe bringt Energie ins System und sorgt für eine Besetzungsinversion im Lasermedium.
  • Der Resonator, eine Anordnung aus zwei parallelen Spiegeln, verstärkt den Laserstrahl und richtet ihn aus.

Zum Artikel Zu den Aufgaben

Stimulierte (induzierte) Emission

Grundwissen

  • Laser nutzen den Effekt der stimulierte (induzierten) Emission.
  • Dabei stimuliert ein Photon ein passend angeregtes Atom dazu, ein Photon zu emittieren.
  • Dieses Photon besitzt die gleiche Energie, die gleiche Schwingungsphase, die gleiche Bewegungsrichtung und die gleiche Polarisation wie das auslösende Photon.

Zum Artikel
Grundwissen

  • Laser nutzen den Effekt der stimulierte (induzierten) Emission.
  • Dabei stimuliert ein Photon ein passend angeregtes Atom dazu, ein Photon zu emittieren.
  • Dieses Photon besitzt die gleiche Energie, die gleiche Schwingungsphase, die gleiche Bewegungsrichtung und die gleiche Polarisation wie das auslösende Photon.

Zum Artikel Zu den Aufgaben

Eigenschaften der Laserstrahlung

Grundwissen

  • Laserlicht ist monofrequent und linear polarisiert.
  • Laserlicht besitzt nur eine sehr geringe Divergenz, ein Laserbündel weitet sich also nur sehr wenig auf.
  • Mit Laserlicht können hohe Leistungsdichten im Fokus erreicht werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Laserlicht ist monofrequent und linear polarisiert.
  • Laserlicht besitzt nur eine sehr geringe Divergenz, ein Laserbündel weitet sich also nur sehr wenig auf.
  • Mit Laserlicht können hohe Leistungsdichten im Fokus erreicht werden.

Zum Artikel Zu den Aufgaben

Lasermedien

Grundwissen

  • In Lasermedien muss eine Besetzungsinversion erzeugt werden, dies ist bei Medien mit nur zwei Energiezuständen nicht möglich.
  • Lasermedien besitzen daher mehr als zwei Energiezustände.
  • Dabei ist ein angeregter Energiezustand, der nicht der höchste ist, metastabil, also langlebig. Eine Besetzungsinversion wird möglich.

Zum Artikel
Grundwissen

  • In Lasermedien muss eine Besetzungsinversion erzeugt werden, dies ist bei Medien mit nur zwei Energiezuständen nicht möglich.
  • Lasermedien besitzen daher mehr als zwei Energiezustände.
  • Dabei ist ein angeregter Energiezustand, der nicht der höchste ist, metastabil, also langlebig. Eine Besetzungsinversion wird möglich.

Zum Artikel Zu den Aufgaben

Streuversuch und Atommodell von RUTHERFORD

Grundwissen

  • Im RUTHERFORDschen Streuversuch wird eine dünne Metallfolie mit \(\alpha\)-Teilchen (positiv geladen) beschossen.
  • Entgegen den Erwartungen werden einige wenige \(\alpha\)-Teilchen von der Folie sogar zurückgestreut.
  • Das Modell von RUTHERFORD führt den sehr kleinen, positiv geladenen Atomkern ein, in dem fast die gesamte Masse des Atoms vereinigt ist.
  • Das Modell kann nicht erklären, warum die Elektronen nicht in den Kern stürzen und wie diskrete Spektrallinien zustande kommen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im RUTHERFORDschen Streuversuch wird eine dünne Metallfolie mit \(\alpha\)-Teilchen (positiv geladen) beschossen.
  • Entgegen den Erwartungen werden einige wenige \(\alpha\)-Teilchen von der Folie sogar zurückgestreut.
  • Das Modell von RUTHERFORD führt den sehr kleinen, positiv geladenen Atomkern ein, in dem fast die gesamte Masse des Atoms vereinigt ist.
  • Das Modell kann nicht erklären, warum die Elektronen nicht in den Kern stürzen und wie diskrete Spektrallinien zustande kommen.

Zum Artikel Zu den Aufgaben