Direkt zum Inhalt

Grundwissen

Bremsstrahlung

Das Wichtigste auf einen Blick

  • In der Anode der Röntgenröhre werden die auftreffenden schnellen Elektronen stark abgebremst. Dabei entsteht die Bremsstrahlung.
  • Die Elektronen werden im Anodenmaterial je nach Abstand zu einem Kern unterschiedlich stark beschleunigt, entsprechend enthält das Spektrum der Bremsstrahlung alle Photonenenergien bis zum Höchstwert.
  • Die Bremsstrahlung einer Röntgenröhre ist ein kontinuierliches Spektrum. Die maximale Photonenenergie bzw. die untere Grenzwellenlänge der Photonen wird dabei von der Beschleunigungsspannung bestimmt.
Aufgaben Aufgaben

Bremsstrahlung durch Abbremsen schneller Elektronen in der Anode

Abb. 1 Erzeugung der Bremsstrahlung durch Ablenkung und damit Beschleunigung von Elektronen im Atom

Elektronen, die in einer Röntgenröhre z.B. durch ein Spannung von \(U=35\,{\rm{kV}}\) beschleunigt werden, haben unmittelbar vor ihrem Auftreffen auf die Anode eine Geschwindigkeit von \(35\% \) der Lichtgeschwindigkeit. Die Elektronen haben also etwa eine Geschwindigkeit von \(105000\,\frac{{{\rm{km}}}}{{\rm{s}}}\) mit der sie in das Anodenmaterial eindringen und dort abgebremst werden.

Hier greift ein allgemeines Phänomen: Ändert sich der Geschwindigkeitsbetrag bzw. die Bewegungsrichtung einer elektrischen Ladung, wird die elektrische Ladung also beschleunigt, so entsteht elektromagnetische Strahlung. Die Energie der dabei auftretenden Photonen ist umso höher, je stärker die Beschleunigung ist.

Bei Abbremsen der schnellen Elektronen im Anodenmaterial entsteht also elektromagnetische Strahlung. Diese elektromagnetische Strahlung wird hier als Bremsstrahlung bezeichnet.

Einer der zentralen Vorgänge, durch den die Elektronen im Anodenmaterial abgebremst werden, ist in Abb. 1 dargestellt. Die Elektronen passieren die Atomkerne des Anodenmaterials in unterschiedlichen Abständen und damit auch jeweils das elektrische Feld dieser Kerne. Je nachdem wie nahe ein eingeschossenes Elektron einem Kern des Anodenmaterials kommt, verspürt es dabei unterschiedlich starke elektrische Felder, welche die Ablenkung und somit die Beschleunigung der Elektronen bewirken. Daraus folgt, dass die Photonen der Bremsstrahlung unterschiedliche Wellenlängen bis zu einer minimalen Wellenlänge \(\lambda_{\rm{gr}}\) besitzen können. Das Spektrum der Bremsstrahlung ist daher ein kontinuierliches Spektrum.

Kontinuierliches Spektrum einer Röntgenröhre

Joachim Herz Stiftung
Abb. 2 Wellenlängenverteilung der Bremsstrahlung bei verschiedenen Beschleunigungsspannungen an Molybdän

Betrachtet man nur das Spektrum der Bremsstrahlung einer Röntgenröhre ohne die sog. charakteristischen Linien, so ergibt sich in Wellenlängendarstellung das in Abb. 2 gezeigte theoretische Emissionsspektrum. Auf der Rechtsachse sind dabei die Wellenlängen \(\lambda\) der entstehenden Photonen dargestellt, auf der Hochachse ihre theoretische Häufigkeit bei verschiedenen Beschleunigungsspannungen und der Verwendung einer Molybdän-Anode dargestellt.

Hierbei wird deutlich, dass es für die Photonen eine untere Grenzwellenlänge \(\lambda_{\rm{gr}}\) gibt, die mit zunehmender Beschleunigungsspannung  kleiner wird. Rechnerisch ergibt sich die Grenzwellenlänge aus\[\lambda_{\rm{gr}}=\frac{h\cdot c}{e\cdot U}\]wobei \(h\) das PLANCKsche Wirkungsquantum, \(c\) die Lichtgeschwindigkeit, \(e\) die Elementarladung und \(U\) die Beschleunigungsspannung ist.

Die Grenzwellenlänge \(\lambda_{\rm{gr}}\) ist entsprechend unabhängig vom Anodenmaterial der Röntgenröhre.

Energieverteilung der Photonen

Joachim Herz Stiftung
Abb. 3 Energieverteilung der Bremsstrahlung bei verschiedenen Beschleunigungsspannungen an Molybdän

Häufig wird das Spektrum der Röntgenstrahlung auch durch die Energie der entstehenden Photonen charakterisiert. Abb. 3 zeigt die Häufigkeit der verschiedenen Photonenenergien. Mit steigender Beschleunigungsspannung verschiebt sich die Kurve des Spektrums zu höheren Photonenenergien hin. Auch die relative Intensität der Bremsstrahlung wächst mit der Beschleunigungsspannung.

Der höchste Wert der Photonenenergie bei der Bremsstrahlung ist dann erreicht, wenn die gesamte kinetische Energie eines Elektrons dazu verwendet wird ein Photon zu erzeugen. Du erkennst dies auch am Emissionsspektrum: Es gibt in keiner Kurve eine Photonenenergie, die größer als die gesamte kinetische Energie eines auf die Anode treffenden Elektrons. Bei einer Beschleunigungsspannung von \(U=35\,\rm{kV}\) beträgt die kinetische Energie der auftreffenden Elektronen gerade \(E_{\rm{kin}}=35\,\rm{keV}\). Daher ist die obere Grenze für die Energie eines beim Abbremsen entstehenden Photons ebenfalls \(E_{\rm{Photon}}=35\,\rm{keV}\).

Hinweis: Das Absinken der Intensität auf Null bei niedriger Photonenenergie ist darauf zurückzuführen, dass in der Praxis die entstehende Röntgenstrahlung durch eine dünne Aluminiumschicht gefiltert wird, da Photonen mit niedriger Energie unerwünscht sind.

Simulation

In der folgenden Simulation kannst du Röntgenbremsspektren von unterschiedlichen Anodenmaterialien bei verschiedenen Betriebsspannungen (Beschleunigungsspannung der Elektronen) simulieren und so deren Einfluss auf das Spektrum untersuchen. Dabei kannst du die Darstellung zwischen der Wellenlängenverteilung und der Energieverteilung wechseln und aus verschiedenen Anodenmaterialien auswählen.

Abb. 4 Simulation von Röntgenbremsspektren in Energie- und Wellenlängendarstellung

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 / Thomas Kippenberg; https://www.kippenbergs.de

Hinweis: Häufig wird der Begriff Intensität im Kontext von Röntgenspektren auch für die Zählrate verwendet. Dies ist physikalisch jedoch nicht korrekt, da Photonen unterschiedlicher Wellenlängen verschiedene Energien besitzen und Energie und Intensität miteinander verknüpft sind.

Weitere Möglichkeiten der Energieabgabe

Die Energieabgabe der auf die Anode aufprallenden Elektronen kann nicht nur durch die Bremsstrahlung erfolgen. Es ist auch möglich, dass die Anodenatome angeregt werden und charakteristische Röntgenstrahlung emittieren. Dies führt gemeinsam mit der Bremsstrahlung zum charakteristischen Spektrum. Auch können die Anodenatome durch die Elektronen zu Gitterschwingungen angeregt werden, was zur Erhitzung der Anode führt.