Direkt zum Inhalt
Suchergebnisse 181 - 210 von 241

Linearbeschleuniger

Ausblick

  • Die Teilchen bewegen sich geradlinig durch wechselnd geladene Driftröhren, in den Zwischenräumen werden sie beschleunigt.
  • Zum Laden der Driftröhren wird eine Wechselspannung mit fester Frequenz genutzt, daher müssen die Driftröhren immer länger werden.
  • Anwendung finden Linearbeschleuniger z.B. bei der Tumorbestrahlung

Zum Artikel
Ausblick

  • Die Teilchen bewegen sich geradlinig durch wechselnd geladene Driftröhren, in den Zwischenräumen werden sie beschleunigt.
  • Zum Laden der Driftröhren wird eine Wechselspannung mit fester Frequenz genutzt, daher müssen die Driftröhren immer länger werden.
  • Anwendung finden Linearbeschleuniger z.B. bei der Tumorbestrahlung

Zum Artikel Zu den Aufgaben

Zyklotron

Ausblick

  • Ein Zyklotron beschleunigt Teilchen platzsparend auf spiralähnlichen Bahnen
  • Die Teilchen bewegen sich dabei senkrecht zu einem homogenen Magnetfeld
  • Durch das E-Feld einer hochfrequenten Wechselspannung zwischen den beiden Duanten werden die Teilchen beschleunigt

Zum Artikel Zu den Aufgaben
Ausblick

  • Ein Zyklotron beschleunigt Teilchen platzsparend auf spiralähnlichen Bahnen
  • Die Teilchen bewegen sich dabei senkrecht zu einem homogenen Magnetfeld
  • Durch das E-Feld einer hochfrequenten Wechselspannung zwischen den beiden Duanten werden die Teilchen beschleunigt

Zum Artikel Zu den Aufgaben

Synchro-Zyklotron und Synchrotrone

Ausblick

  • Synchro-Zyklotrone und später Synchrotrone erhöhen die maximale Energie von Teilchenbeschleunigern im Vergleich zu einfachen Zyklotronen.
  • Beim Beschleunigen bzw. beim Ablenken muss das System mit der relativistischen Massenzunahme der Teilchen synchronisiert werden.
  • Man unterscheidet Ionen-Synchrotrone und Elektronen-Synchrotrone

Zum Artikel Zu den Aufgaben
Ausblick

  • Synchro-Zyklotrone und später Synchrotrone erhöhen die maximale Energie von Teilchenbeschleunigern im Vergleich zu einfachen Zyklotronen.
  • Beim Beschleunigen bzw. beim Ablenken muss das System mit der relativistischen Massenzunahme der Teilchen synchronisiert werden.
  • Man unterscheidet Ionen-Synchrotrone und Elektronen-Synchrotrone

Zum Artikel Zu den Aufgaben

Flächenladungsdichte

Ausblick

  • Die Flächenladungsdichte ist das Verhältnis aus Ladung und Fläche \(\sigma = \frac{Q}{A}\).
  • Die Flächenladungsdichte ist eng mit der Stärke des E-Feldes verknüpft: \({\sigma  = {\varepsilon _0} \cdot E}\)
  • Die Zusammenhänge gelten auch für gekrümmte Oberflächen wie Kugelschalen.

Zum Artikel
Ausblick

  • Die Flächenladungsdichte ist das Verhältnis aus Ladung und Fläche \(\sigma = \frac{Q}{A}\).
  • Die Flächenladungsdichte ist eng mit der Stärke des E-Feldes verknüpft: \({\sigma  = {\varepsilon _0} \cdot E}\)
  • Die Zusammenhänge gelten auch für gekrümmte Oberflächen wie Kugelschalen.

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis schwach gedämpft - Schwingfall (Theorie)

Ausblick
Ausblick

Schwingungsdämpfung durch Wirbelströme

Ausblick
Ausblick

Parallelschaltung von Widerständen

Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier parallel geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(\frac{1}{R_{12}}=\frac{1}{R_1} +\frac{1}{R_2}\)
  •  Der Gesamtwiderstands einer Parallelschaltung ist stets kleiner als der kleinste Einzelwiderstand eines Astes.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier parallel geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(\frac{1}{R_{12}}=\frac{1}{R_1} +\frac{1}{R_2}\)
  •  Der Gesamtwiderstands einer Parallelschaltung ist stets kleiner als der kleinste Einzelwiderstand eines Astes.

Zum Artikel Zu den Aufgaben

OHMsches Gesetz

Grundwissen

Das Experiment zeigt, dass bei vielen elektrischen Leitern die Spannung \(U\), die über dem Leiter abfällt, proportional ist zur Stärke \(I\) des Stroms, der durch den Leiter fließt.

Diese Proportionalität bezeichnet man als das OHMsche Gesetz und beschreibt sie durch die Gleichung \(U = R \cdot I\).

Den Proportionalitätsfaktor \(R\) bezeichnet man als elektrischen Widerstand. Seine Maßeinheit ist \(1\,\Omega\) (Ohm).

Zum Artikel Zu den Aufgaben
Grundwissen

Das Experiment zeigt, dass bei vielen elektrischen Leitern die Spannung \(U\), die über dem Leiter abfällt, proportional ist zur Stärke \(I\) des Stroms, der durch den Leiter fließt.

Diese Proportionalität bezeichnet man als das OHMsche Gesetz und beschreibt sie durch die Gleichung \(U = R \cdot I\).

Den Proportionalitätsfaktor \(R\) bezeichnet man als elektrischen Widerstand. Seine Maßeinheit ist \(1\,\Omega\) (Ohm).

Zum Artikel Zu den Aufgaben

Leiter und Nichtleiter

Grundwissen

  • Materialien können grob in zwei Kategorien eingeteilt werden: Leiter (z.B. Metalle) und Nichtleiter (z.B. Kunststoffe).
  • Ob ein Material Strom gut oder schlecht leitet kannst du mit einer Testschaltung prüfen.
  • Je mehr Salz im Wasser gelöst ist, desto besser leitet Wasser Strom.
  • Die meisten Gase leiten Strom nicht.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Materialien können grob in zwei Kategorien eingeteilt werden: Leiter (z.B. Metalle) und Nichtleiter (z.B. Kunststoffe).
  • Ob ein Material Strom gut oder schlecht leitet kannst du mit einer Testschaltung prüfen.
  • Je mehr Salz im Wasser gelöst ist, desto besser leitet Wasser Strom.
  • Die meisten Gase leiten Strom nicht.

Zum Artikel Zu den Aufgaben

Funktionsprinzip von Leuchtstofflampen

Ausblick

  • In Leuchtstofflampen sorgt keine Glühwendel für Licht sondern Quecksilberatome werden zum Leuchten angeregt.
  • Quecksilber emittiert zum großen Teil UV-Licht, dass durch einen speziellen Leuchtstoff in sichtbares Licht umgewandelt wird.
  • Leuchtstofflampen können auch durch starke externe Felder zum Leuchten angeregt werden.

Zum Artikel
Ausblick

  • In Leuchtstofflampen sorgt keine Glühwendel für Licht sondern Quecksilberatome werden zum Leuchten angeregt.
  • Quecksilber emittiert zum großen Teil UV-Licht, dass durch einen speziellen Leuchtstoff in sichtbares Licht umgewandelt wird.
  • Leuchtstofflampen können auch durch starke externe Felder zum Leuchten angeregt werden.

Zum Artikel Zu den Aufgaben

Elektrische Ladung

Grundwissen

  • Die Einheit der elektrische Ladung, Symbol \(Q\), ist das Coulomb, Symbol \(\rm{C}\).
  • Ein Elektron besitzt die negative Elementarladung: \(q_{\rm{Elektron}}=-e = -1{,}6 \cdot 10^{-19}\,\rm{C}\).

Zum Artikel
Grundwissen

  • Die Einheit der elektrische Ladung, Symbol \(Q\), ist das Coulomb, Symbol \(\rm{C}\).
  • Ein Elektron besitzt die negative Elementarladung: \(q_{\rm{Elektron}}=-e = -1{,}6 \cdot 10^{-19}\,\rm{C}\).

Zum Artikel Zu den Aufgaben

Elektrische Kraft (2 Spezialfälle)

Grundwissen

  • Die elektrische Kraft \(\vec F_{\rm{el}}\) auf eine Punktladung \(q\) im Zwischenraum zweier entgegengesetzt geladener paralleler Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist senkrecht zu den Plattenoberflächen gerichtet. Der Betrag \(F_{\rm{el}}\) dieser elektrischen Kraft berechnet sich durch \(F_{\rm{el}} = \frac{1}{\varepsilon _0} \cdot \frac{\left| Q \right| \cdot \left|q \right|}{A}\).
  • Die elektrische Kraft \(\vec F_{\rm{C}}\) auf eine Punktladung \(q\) im Abstand \(r\) von einer ortsfesten Punktladung \(Q\) (COULOMB-Kraft) liegt auf der Verbindungsgeraden der beiden Ladungen. Der Betrag \(F_{\rm{C}}\) dieser COULOMB-Kraft berechnet sich durch \(F_{\rm{C}} = \frac{1}{4 \cdot \pi  \cdot \varepsilon _0} \cdot \frac{\left|Q\right| \cdot \left|q\right|}{{{r^2}}}\).
  • Dabei ist jeweils \(\varepsilon_0 = 8{,}854 \cdot {10^{-12}}\,\frac{\rm{A}\,\rm{s}}{\rm{V}\,\rm{m}}\) die elektrische Feldkonstante. 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die elektrische Kraft \(\vec F_{\rm{el}}\) auf eine Punktladung \(q\) im Zwischenraum zweier entgegengesetzt geladener paralleler Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist senkrecht zu den Plattenoberflächen gerichtet. Der Betrag \(F_{\rm{el}}\) dieser elektrischen Kraft berechnet sich durch \(F_{\rm{el}} = \frac{1}{\varepsilon _0} \cdot \frac{\left| Q \right| \cdot \left|q \right|}{A}\).
  • Die elektrische Kraft \(\vec F_{\rm{C}}\) auf eine Punktladung \(q\) im Abstand \(r\) von einer ortsfesten Punktladung \(Q\) (COULOMB-Kraft) liegt auf der Verbindungsgeraden der beiden Ladungen. Der Betrag \(F_{\rm{C}}\) dieser COULOMB-Kraft berechnet sich durch \(F_{\rm{C}} = \frac{1}{4 \cdot \pi  \cdot \varepsilon _0} \cdot \frac{\left|Q\right| \cdot \left|q\right|}{{{r^2}}}\).
  • Dabei ist jeweils \(\varepsilon_0 = 8{,}854 \cdot {10^{-12}}\,\frac{\rm{A}\,\rm{s}}{\rm{V}\,\rm{m}}\) die elektrische Feldkonstante. 

Zum Artikel Zu den Aufgaben

Elektrisches Feld und Feldliniendarstellung

Grundwissen

  • Im Raum um eine Ladung herrscht ein elektrisches Feld. Dieses elektrische Feld überträgt die Kraftwirkung dieser Ladung auf andere Ladungen.
  • Die elektrische Feldstärke ist definiert als der Quotient aus der elektrischen Kraft \({\vec F_{\rm{el}}}\) auf eine Probeladung und der Probeladung \(q\): \(\vec E = \frac{{{{\vec F}_{\rm{el}}}}}{q}\).
  • Für die elektrische Feldstärke \(\vec E\) im Raum um eine punktförmige Ladung \(Q\) gilt: Der Feldstärkevektor ist für eine positive Ladung radial von der Ladung weg und für eine negative Ladung radial zur Ladung hin orientiert, der Betrag ist umgekehrt proportional zum Quadrat des Abstands \(r\) und hat den Wert \(E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{\left|Q\right|}{r^2}\).
  • Die elektrische Feldstärke \(\vec E\) im Zwischenraum zweier entgegengesetzt geladener Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist konstant (homogenes elektrisches Feld). Der Feldstärkevektor steht senkrecht zu den Plattenoberflächen, ist von der positiv zur negativ geladenen Platte orientiert und hat den Betrag \(E = \frac{1}{\varepsilon_0} \cdot \frac{\left|Q\right|}{A}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Raum um eine Ladung herrscht ein elektrisches Feld. Dieses elektrische Feld überträgt die Kraftwirkung dieser Ladung auf andere Ladungen.
  • Die elektrische Feldstärke ist definiert als der Quotient aus der elektrischen Kraft \({\vec F_{\rm{el}}}\) auf eine Probeladung und der Probeladung \(q\): \(\vec E = \frac{{{{\vec F}_{\rm{el}}}}}{q}\).
  • Für die elektrische Feldstärke \(\vec E\) im Raum um eine punktförmige Ladung \(Q\) gilt: Der Feldstärkevektor ist für eine positive Ladung radial von der Ladung weg und für eine negative Ladung radial zur Ladung hin orientiert, der Betrag ist umgekehrt proportional zum Quadrat des Abstands \(r\) und hat den Wert \(E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{\left|Q\right|}{r^2}\).
  • Die elektrische Feldstärke \(\vec E\) im Zwischenraum zweier entgegengesetzt geladener Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist konstant (homogenes elektrisches Feld). Der Feldstärkevektor steht senkrecht zu den Plattenoberflächen, ist von der positiv zur negativ geladenen Platte orientiert und hat den Betrag \(E = \frac{1}{\varepsilon_0} \cdot \frac{\left|Q\right|}{A}\).

Zum Artikel Zu den Aufgaben

Homogenes elektrisches Feld

Grundwissen

  • Hat die elektrische Feldstärke \(\vec E\) in einem Raumgebiet immer die gleiche Richtung, die gleiche Orientierung und den gleichen Betrag, so sprechen wir von einem homogenen elektrischen Feld in diesem Raumgebiet.
  • Wichtigstes Beispiel für ein homogenes elektrisches Feld ist das Feld im Zwischenraum zweier entgegengesetzt geladener Platten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Hat die elektrische Feldstärke \(\vec E\) in einem Raumgebiet immer die gleiche Richtung, die gleiche Orientierung und den gleichen Betrag, so sprechen wir von einem homogenen elektrischen Feld in diesem Raumgebiet.
  • Wichtigstes Beispiel für ein homogenes elektrisches Feld ist das Feld im Zwischenraum zweier entgegengesetzt geladener Platten.

Zum Artikel Zu den Aufgaben

Potenzial

Grundwissen

  • Jedem Punkt \(\rm{P}\) eines elektrischen Feldes kann ein Potenzial \(\varphi_{\rm{P}_0} \left( \rm{P} \right)=\frac{{{E_{{\rm{pot}}{\rm{,}}{{\rm{P}}_0}}}\left( {\rm{P}} \right)}}{q}\) zugeordnet werden. Dieses Potenzial ist von der Größe und der Anordnung der felderzeugenden Ladung \(Q\) und der Wahl eines Bezugspunktes \(\rm{P}_0\) abhängig.
  • Im COULOMB-Feld wählt man den Bezugspunkt des Potenzials unendlich weit von der felderzeugenden Ladung entfernt. Dann hat das Potenzial im Abstand \(r\) von der felderzeugenden Ladung den Wert \( {\varphi \left( r \right)} = \frac{1}{{4 \cdot \pi \cdot {\varepsilon _0}}} \cdot Q \cdot \frac{1}{r}\).
  • Im homogenen elektrischen Feld (z.B. im Zwischenraum zweier entgegengesetzt geladener Platten) wählt man als Bezugspunkt des Potenzials die Oberfläche der negativ geladenen Platte. Dann hat das Potenzial im Abstand \(x\) von der negativ geladenen Platte den Wert \(\varphi \left( x \right) = E \cdot x\) bzw. \(\varphi \left( x \right) = \frac{1}{{{\varepsilon_0}}} \cdot \frac{{\left| Q \right|}}{A} \cdot x\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Jedem Punkt \(\rm{P}\) eines elektrischen Feldes kann ein Potenzial \(\varphi_{\rm{P}_0} \left( \rm{P} \right)=\frac{{{E_{{\rm{pot}}{\rm{,}}{{\rm{P}}_0}}}\left( {\rm{P}} \right)}}{q}\) zugeordnet werden. Dieses Potenzial ist von der Größe und der Anordnung der felderzeugenden Ladung \(Q\) und der Wahl eines Bezugspunktes \(\rm{P}_0\) abhängig.
  • Im COULOMB-Feld wählt man den Bezugspunkt des Potenzials unendlich weit von der felderzeugenden Ladung entfernt. Dann hat das Potenzial im Abstand \(r\) von der felderzeugenden Ladung den Wert \( {\varphi \left( r \right)} = \frac{1}{{4 \cdot \pi \cdot {\varepsilon _0}}} \cdot Q \cdot \frac{1}{r}\).
  • Im homogenen elektrischen Feld (z.B. im Zwischenraum zweier entgegengesetzt geladener Platten) wählt man als Bezugspunkt des Potenzials die Oberfläche der negativ geladenen Platte. Dann hat das Potenzial im Abstand \(x\) von der negativ geladenen Platte den Wert \(\varphi \left( x \right) = E \cdot x\) bzw. \(\varphi \left( x \right) = \frac{1}{{{\varepsilon_0}}} \cdot \frac{{\left| Q \right|}}{A} \cdot x\).

Zum Artikel Zu den Aufgaben

Kapazität des Plattenkondensators

Grundwissen

  • Die Kapazität eines Plattenkondensators (Flächeninhalt der (gleichgroßen) Platten \(A\), Plattenabstand \(d\), Dielektrikum mit relativer Dielektrizitätskonstante \({\varepsilon _r}\)) berechnet sich durch \(C = {\varepsilon _0} \cdot {\varepsilon _r} \cdot \frac{A}{d}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Kapazität eines Plattenkondensators (Flächeninhalt der (gleichgroßen) Platten \(A\), Plattenabstand \(d\), Dielektrikum mit relativer Dielektrizitätskonstante \({\varepsilon _r}\)) berechnet sich durch \(C = {\varepsilon _0} \cdot {\varepsilon _r} \cdot \frac{A}{d}\).

Zum Artikel Zu den Aufgaben

Kondensator und Kapazität

Grundwissen

  • Ein Kondensator ist eine Anordnung von zwei Leitern, zwischen denen sich ein isolierendes Material, ein sogenanntes Dielektrikum befindet.
  • Legt man über die beiden Leiter eine Spannung an, dann befinden sich nach einiger Zeit auf den Leitern entgegengesetzte, betraglich gleich große Ladungen.
  • Der Ladungsbetrag \(Q\), der sich auf dem Kondensator befindet, ist proportional zur Spannung \(U\), die über dem Kondensator anliegt: \(Q=C \cdot U\). Den Proportionalitätsfaktor \(C\) bezeichnet man als Kapazität des Kondensators. 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Kondensator ist eine Anordnung von zwei Leitern, zwischen denen sich ein isolierendes Material, ein sogenanntes Dielektrikum befindet.
  • Legt man über die beiden Leiter eine Spannung an, dann befinden sich nach einiger Zeit auf den Leitern entgegengesetzte, betraglich gleich große Ladungen.
  • Der Ladungsbetrag \(Q\), der sich auf dem Kondensator befindet, ist proportional zur Spannung \(U\), die über dem Kondensator anliegt: \(Q=C \cdot U\). Den Proportionalitätsfaktor \(C\) bezeichnet man als Kapazität des Kondensators. 

Zum Artikel Zu den Aufgaben

Auswerten von Entladekurven

Grundwissen

  • Aus Messwerten von der Entladung eines Kondensators kannst du mit verschiedenen Methoden die konkreten Werte für die Parameter der Exponentialfunktion, die die gemessene Größe beschreibt, bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Aus Messwerten von der Entladung eines Kondensators kannst du mit verschiedenen Methoden die konkreten Werte für die Parameter der Exponentialfunktion, die die gemessene Größe beschreibt, bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel Zu den Aufgaben

Magnetfeld von geraden Leitern

Grundwissen

  • Wenn durch einen geraden und sehr langen Leiter ein elektrischer Strom fließt, dann haben die Feldlinien des magnetischen Feldes die Form von Kreisen, die in Ebenen senkrecht zu dem Leiter verlaufen und ihren Mittelpunkt im Leiter haben.
  • Die Orientierung des Feldes kann man mit der ersten Rechte-Faust-Regel bestimmen.
  • Ist \(I\) die Stärke des Stroms im Leiter und \(r\) der Abstand eines Punktes zum Leiter, dann berechnet sich der Betrag der magnetischen Flussdichte \(B\) an diesem Punkt durch \(B = {\mu _0} \cdot \frac{1}{{2 \, \pi \cdot r}} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn durch einen geraden und sehr langen Leiter ein elektrischer Strom fließt, dann haben die Feldlinien des magnetischen Feldes die Form von Kreisen, die in Ebenen senkrecht zu dem Leiter verlaufen und ihren Mittelpunkt im Leiter haben.
  • Die Orientierung des Feldes kann man mit der ersten Rechte-Faust-Regel bestimmen.
  • Ist \(I\) die Stärke des Stroms im Leiter und \(r\) der Abstand eines Punktes zum Leiter, dann berechnet sich der Betrag der magnetischen Flussdichte \(B\) an diesem Punkt durch \(B = {\mu _0} \cdot \frac{1}{{2 \, \pi \cdot r}} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).

Zum Artikel Zu den Aufgaben

Magnetfeld von langen Zylinderspulen

Grundwissen

  • Wenn durch eine lange Zylinderspule ein elektrischer Strom fließt, dann herrscht im Innenraum der Spule ein homogenes Magnetfeld. Die Feldlinien verlaufen dort parallel zur Zylinderachse.
  • Die Orientierung des magnetischen Feldes kann man mit der zweiten Rechte-Faust-Regel bestimmen.
  • Ist \(N\) die Anzahl der Windungen und \(l\) die Länge der Spule sowie \(I\) die Stärke des Stroms durch die Spule, dann berechnet sich der Betrag \(B\) der magnetischen Flussdichte im Innenraum der Spule durch \(B = {\mu _0} \cdot \frac{N}{l} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).
  • Befindet sich im Innenraum der langen Zylinderspule ein Kern aus einem ferromagnetischen Stoff mit der relativen Permeabilität \(\mu_{\rm{r}}\), dann berechnet sich der Betrag \(B\) der magnetischen Flussdichte im Innenraum der Spule durch \(B = \mu _0 \cdot \mu_{\rm{r}} \cdot \frac{N}{l} \cdot I\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn durch eine lange Zylinderspule ein elektrischer Strom fließt, dann herrscht im Innenraum der Spule ein homogenes Magnetfeld. Die Feldlinien verlaufen dort parallel zur Zylinderachse.
  • Die Orientierung des magnetischen Feldes kann man mit der zweiten Rechte-Faust-Regel bestimmen.
  • Ist \(N\) die Anzahl der Windungen und \(l\) die Länge der Spule sowie \(I\) die Stärke des Stroms durch die Spule, dann berechnet sich der Betrag \(B\) der magnetischen Flussdichte im Innenraum der Spule durch \(B = {\mu _0} \cdot \frac{N}{l} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).
  • Befindet sich im Innenraum der langen Zylinderspule ein Kern aus einem ferromagnetischen Stoff mit der relativen Permeabilität \(\mu_{\rm{r}}\), dann berechnet sich der Betrag \(B\) der magnetischen Flussdichte im Innenraum der Spule durch \(B = \mu _0 \cdot \mu_{\rm{r}} \cdot \frac{N}{l} \cdot I\).

Zum Artikel Zu den Aufgaben