Direkt zum Inhalt
Suchergebnisse 31 - 60 von 122

Induktion durch Änderung der magnetischen Flussdichte (Simulation)

Versuche

  • Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Induktionsspannung von der Änderung der magnetischen Flussdichte.

Zum Artikel
Versuche

  • Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Induktionsspannung von der Änderung der magnetischen Flussdichte.

Zum Artikel Zu den Aufgaben

Erdmagnetfeld (Simulation von PhET)

Versuche
Versuche

Von der Induktion zum Transformator

Versuche

  • Übergang vom Phänomen der Induktion zur  technischen Nutzung beim Transformator motivieren.

Zum Artikel
Versuche

  • Übergang vom Phänomen der Induktion zur  technischen Nutzung beim Transformator motivieren.

Zum Artikel Zu den Aufgaben

Kalibrieren eines Elektromagneten

Versuche

  • Aufnahme eines \(I\)-\(B\)-Diagramms zur Kalibrierung eines Elektromagneten
  • Demonstration von Neukurve, Remanenz und Koerzitivstrom

Zum Artikel
Versuche

  • Aufnahme eines \(I\)-\(B\)-Diagramms zur Kalibrierung eines Elektromagneten
  • Demonstration von Neukurve, Remanenz und Koerzitivstrom

Zum Artikel Zu den Aufgaben

Magnetfeld von langen Zylinderspulen (qualitativ)

Versuche

  • Demonstration des Magnetfelds (insbesonder im Innenraum) von langen Zylinderspulen

Zum Artikel
Versuche

  • Demonstration des Magnetfelds (insbesonder im Innenraum) von langen Zylinderspulen

Zum Artikel Zu den Aufgaben

Kraft auf stromdurchflossene Alufolie

Versuche

  • Veranschaulichung der magnetischen Kraftwirkung auf einen stromdurchflossenen Leiter
  • Untersuchung der Richtung der magnetischen Kraftwirkung
  • Herleitung oder Bestätigung der Drei-Finger-Regel

Zum Artikel
Versuche

  • Veranschaulichung der magnetischen Kraftwirkung auf einen stromdurchflossenen Leiter
  • Untersuchung der Richtung der magnetischen Kraftwirkung
  • Herleitung oder Bestätigung der Drei-Finger-Regel

Zum Artikel Zu den Aufgaben

Induktion durch Änderung des Flächeninhalts

Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • der Feldvektor \(\vec B\) (und damit die Richtung, die Orientierung und die Flussdichte) des homogenen magnetischen Feldes ist konstant
  • die Richtung und die Orientierung des Flächenvektors \(\vec A\) des Teils der Leiterschleife, der vom magnetische Feld durchsetzt wird, sind konstant
  • die Weite \(\varphi\) des Winkels zwischen Flächenvektor \(\vec A\) und Feldvektor \(\vec B\) ist konstant

Wenn sich der Betrag \(A\), d.h. der Inhalt der Fläche des Teils der Leiterschleife oder Spule mit Windungszahl \(N\), die vom magnetischen Feld durchsetzt wird, mit der Änderungsrate \(\frac{dA}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}} =  - N \cdot B \cdot \frac{dA}{dt} \cdot \cos\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • der Feldvektor \(\vec B\) (und damit die Richtung, die Orientierung und die Flussdichte) des homogenen magnetischen Feldes ist konstant
  • die Richtung und die Orientierung des Flächenvektors \(\vec A\) des Teils der Leiterschleife, der vom magnetische Feld durchsetzt wird, sind konstant
  • die Weite \(\varphi\) des Winkels zwischen Flächenvektor \(\vec A\) und Feldvektor \(\vec B\) ist konstant

Wenn sich der Betrag \(A\), d.h. der Inhalt der Fläche des Teils der Leiterschleife oder Spule mit Windungszahl \(N\), die vom magnetischen Feld durchsetzt wird, mit der Änderungsrate \(\frac{dA}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}} =  - N \cdot B \cdot \frac{dA}{dt} \cdot \cos\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben

Magnetischen Kraft und Definition der magnetischen Flussdichte mit der Schnellwaage

Versuche

  • Erarbeitung der Formel für die magnetische Kraft auf einen stromdurchflossenen Leiter
  • Definition der magnetischen Flussdichte \(B\)

Zum Artikel
Versuche

  • Erarbeitung der Formel für die magnetische Kraft auf einen stromdurchflossenen Leiter
  • Definition der magnetischen Flussdichte \(B\)

Zum Artikel Zu den Aufgaben

Magnetische Kraft auf eine stromdurchflossene Leiterschaukel (Simulation)

Versuche
Versuche

Induktion durch Änderung des Flächeninhalts (Simulation)

Versuche

  • Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Induktionsspannung von der Änderung des Flächeninhalts.

Zum Artikel
Versuche

  • Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Induktionsspannung von der Änderung des Flächeninhalts.

Zum Artikel Zu den Aufgaben

Regel von LENZ

Versuche

  • Versuche zum Entwickeln der LENZschen Regel
  • Bestätigung der LENZschen Regel

Zum Artikel
Versuche

  • Versuche zum Entwickeln der LENZschen Regel
  • Bestätigung der LENZschen Regel

Zum Artikel Zu den Aufgaben

Induktion durch Änderung der Winkelweite (Simulation)

Versuche

  • Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Induktionsspannung von der Änderung der Winkelweite.

Zum Artikel
Versuche

  • Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Induktionsspannung von der Änderung der Winkelweite.

Zum Artikel Zu den Aufgaben

Stehende elektromagnetische Wellen

Versuche
Versuche

Elektromagnet (Heimversuch)

Versuche
Versuche

Elektromagnetische Wellen vom Dipol

Versuche
Versuche

Drei Grundversuche zur elektromagnetischen Induktion (Simulationen)

Versuche

  • Anhand von drei grundlegenden Versuchen kannst du erkennen, wann elektromagnetische Induktion auftritt.

Zum Artikel
Versuche

  • Anhand von drei grundlegenden Versuchen kannst du erkennen, wann elektromagnetische Induktion auftritt.

Zum Artikel Zu den Aufgaben

Magnetische Kraft zwischen zwei parallel verlaufenden, stromdurchflossenen geraden Leitern

Versuche

  • Demonstration der magnetischen Kraft zwischen zwei parallel verlaufenden, stromdurchflossenen geraden Leitern

Zum Artikel
Versuche

  • Demonstration der magnetischen Kraft zwischen zwei parallel verlaufenden, stromdurchflossenen geraden Leitern

Zum Artikel Zu den Aufgaben

Induktion durch Änderung der Winkelweite

Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • die magnetische Flussdichte \(B\) des homogenen magnetischen Feldes ist konstant
  • der Flächeninhalt \(A\) der (Teil-)Fläche der Leiterschleife oder Spule mit der Windungszahl \(N\), die sich im magnetischen Feld befindet, ist konstant

Wenn sich die Richtung oder die Orientierung des Feldvektors \(\vec B\) oder des Flächenvektors \(\vec A\) und damit die Weite \(\varphi\) des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\) mit der Änderungsrate \(\frac{d \varphi}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}} =  N \cdot B \cdot A \cdot \frac{d \varphi}{dt} \cdot \sin\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • die magnetische Flussdichte \(B\) des homogenen magnetischen Feldes ist konstant
  • der Flächeninhalt \(A\) der (Teil-)Fläche der Leiterschleife oder Spule mit der Windungszahl \(N\), die sich im magnetischen Feld befindet, ist konstant

Wenn sich die Richtung oder die Orientierung des Feldvektors \(\vec B\) oder des Flächenvektors \(\vec A\) und damit die Weite \(\varphi\) des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\) mit der Änderungsrate \(\frac{d \varphi}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}} =  N \cdot B \cdot A \cdot \frac{d \varphi}{dt} \cdot \sin\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben

Induktion in der Leiterschaukel

Versuche

  • Nachweis der auftretenden Induktionsspannung bei der Bewegung eines Leiters im Magnetfeld.
  • Demonstration des Generatorprinzips: Umwandlung von mechanischer in elektrische Energie.

Zum Artikel
Versuche

  • Nachweis der auftretenden Induktionsspannung bei der Bewegung eines Leiters im Magnetfeld.
  • Demonstration des Generatorprinzips: Umwandlung von mechanischer in elektrische Energie.

Zum Artikel Zu den Aufgaben

Magnetischer Fluss und Induktionsgesetz

Grundwissen

  • Der magnetische Fluss \(\Phi = B \cdot A \cdot \cos\left(\varphi\right)\) ist salopp gesagt das Maß für die "Menge an Magnetfeld, das in einer Induktionsanordnung durch die Leiterschleife fließt".
  • In einer Induktionsanordnung kann man am Spannungsmesser in der Induktionsspule immer dann eine Induktionsspannung \(U_{\rm{i}}\) beobachten, wenn sich der magnetische Fluss \(\Phi\) durch die Leiterschleife ändert.
  • Der Wert der Induktionsspannung berechnet sich durch \({U_{\rm{i}}} = - \frac{{d\Phi }}{{dt}}\) bzw. für den Fall einer Spule mit \(N\) Windungen als Leiterschleife \({U_{\rm{i}}} = - N \cdot \frac{{d\Phi }}{{dt}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der magnetische Fluss \(\Phi = B \cdot A \cdot \cos\left(\varphi\right)\) ist salopp gesagt das Maß für die "Menge an Magnetfeld, das in einer Induktionsanordnung durch die Leiterschleife fließt".
  • In einer Induktionsanordnung kann man am Spannungsmesser in der Induktionsspule immer dann eine Induktionsspannung \(U_{\rm{i}}\) beobachten, wenn sich der magnetische Fluss \(\Phi\) durch die Leiterschleife ändert.
  • Der Wert der Induktionsspannung berechnet sich durch \({U_{\rm{i}}} = - \frac{{d\Phi }}{{dt}}\) bzw. für den Fall einer Spule mit \(N\) Windungen als Leiterschleife \({U_{\rm{i}}} = - N \cdot \frac{{d\Phi }}{{dt}}\).

Zum Artikel Zu den Aufgaben

Magnetfeld eines geraden Leiters

Grundwissen

  • Das Magnetfeld um einen geraden Leiter verläuft in konzentrischen Kreisen um den Leiter.
  • Richtung und Stärke des Magnetfeldes werden u.a. von Stromstärke und Stromrichtung im Leiter bestimmt.
  • Die Richtung und die Orientierung des Magnetfeldes kannst du mit der Rechten-Faust-Regel ermitteln.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Magnetfeld um einen geraden Leiter verläuft in konzentrischen Kreisen um den Leiter.
  • Richtung und Stärke des Magnetfeldes werden u.a. von Stromstärke und Stromrichtung im Leiter bestimmt.
  • Die Richtung und die Orientierung des Magnetfeldes kannst du mit der Rechten-Faust-Regel ermitteln.

Zum Artikel Zu den Aufgaben

Bestimmung der magnetischen Kraft

Grundwissen

  • Herrscht an einem Punkt ein magnetisches Feld mit bekannter Richtung, Orientierung und bekanntem Betrag \(B\) der magnetischen Flussdichte und befindet sich an diesem Punkt ein Leiterstück der Länge \(l\), durch das ein Strom der Stärke \(I\) fließt, dann kannst du die Richtung, die Orientierung und den Betrag der magnetischen Kraft \(\vec F_{\rm{mag}}\) auf dieses Leiterstück bestimmen.
  • Die Richtung und die Orientierung der magnetischen Kraft \(\vec F_{\rm{mag}}\) auf das Leiterstück bestimmst du mit Hilfe der Drei-Finger-Regel der rechten Hand (Daumen in elektrische Stromrichtung, Zeigefinger in Magnetfeldrichtung → Mittelfinger in Kraftrichtung).
  • Den Betrag \(F_{\rm{mag}}\) der magnetischen Kraft auf das Leiterstück berechnest du mit der Formel \({F_{{\rm{mag}}}} = I \cdot l \cdot  B \cdot \sin \left( \varphi \right)\), wobei \(\varphi\) die Weite des Winkels zwischen \(\vec B\) und \(\vec I\) ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Herrscht an einem Punkt ein magnetisches Feld mit bekannter Richtung, Orientierung und bekanntem Betrag \(B\) der magnetischen Flussdichte und befindet sich an diesem Punkt ein Leiterstück der Länge \(l\), durch das ein Strom der Stärke \(I\) fließt, dann kannst du die Richtung, die Orientierung und den Betrag der magnetischen Kraft \(\vec F_{\rm{mag}}\) auf dieses Leiterstück bestimmen.
  • Die Richtung und die Orientierung der magnetischen Kraft \(\vec F_{\rm{mag}}\) auf das Leiterstück bestimmst du mit Hilfe der Drei-Finger-Regel der rechten Hand (Daumen in elektrische Stromrichtung, Zeigefinger in Magnetfeldrichtung → Mittelfinger in Kraftrichtung).
  • Den Betrag \(F_{\rm{mag}}\) der magnetischen Kraft auf das Leiterstück berechnest du mit der Formel \({F_{{\rm{mag}}}} = I \cdot l \cdot  B \cdot \sin \left( \varphi \right)\), wobei \(\varphi\) die Weite des Winkels zwischen \(\vec B\) und \(\vec I\) ist.

Zum Artikel Zu den Aufgaben

Energie des magnetischen Feldes

Grundwissen

  • Im Magnetfeld einer Spule ist Energie gespeichert.
  • Die magnetische Feldenergie einer Spule beträgt \({E_{\rm{mag}}}\left( t \right) = {\textstyle{1 \over 2}} \cdot L \cdot {I^2}\left( t \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Magnetfeld einer Spule ist Energie gespeichert.
  • Die magnetische Feldenergie einer Spule beträgt \({E_{\rm{mag}}}\left( t \right) = {\textstyle{1 \over 2}} \cdot L \cdot {I^2}\left( t \right)\)

Zum Artikel Zu den Aufgaben

Ausbreitung Elektromagnetischer Wellen

Grundwissen

  • Man unterscheidet bei der Ausbreitung elektromagnetischer Wellen zwischen Nahfeld und Fernfeld.
  • Das Nahfeld ist in unmittelbarer Nähe zur Quelle/Antenne.
  • Im Fernfeld schwingen elektrisches und magnetisches Feld in Phase.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man unterscheidet bei der Ausbreitung elektromagnetischer Wellen zwischen Nahfeld und Fernfeld.
  • Das Nahfeld ist in unmittelbarer Nähe zur Quelle/Antenne.
  • Im Fernfeld schwingen elektrisches und magnetisches Feld in Phase.

Zum Artikel Zu den Aufgaben

Hall-Effekt (Grundversuch)

Versuche

  • Qualitativer Nachweis des Auftretens des Hall-Effektes
  • Nachweis von \(U_{\rm{H}} \sim I_{\rm{quer}}\)

Zum Artikel
Versuche

  • Qualitativer Nachweis des Auftretens des Hall-Effektes
  • Nachweis von \(U_{\rm{H}} \sim I_{\rm{quer}}\)

Zum Artikel Zu den Aufgaben

Geladene Teilchen im magnetischen Querfeld

Grundwissen

  • Geladene Teilchen, die in einem magnetischen Feld ruhen, erfahren keine Kraft und bleiben in Ruhe.

  • Geladenen Teilchen, die sich senkrecht zu den Feldlinien eines magnetischen Feldes bewegen, erfahren eine Kraft, die senkrecht zur Bewegungsrichtung und senkrecht zu den Feldlinien gerichtet ist und werden in Richtung dieser Kraft beschleunigt. Dabei ändert sich nur die Richtung, nicht aber der Betrag der Geschwindigkeit. Ist das magnetische Feld homogen, so bewegen sich die Teilchen dabei auf einer Kreisbahn.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Geladene Teilchen, die in einem magnetischen Feld ruhen, erfahren keine Kraft und bleiben in Ruhe.

  • Geladenen Teilchen, die sich senkrecht zu den Feldlinien eines magnetischen Feldes bewegen, erfahren eine Kraft, die senkrecht zur Bewegungsrichtung und senkrecht zu den Feldlinien gerichtet ist und werden in Richtung dieser Kraft beschleunigt. Dabei ändert sich nur die Richtung, nicht aber der Betrag der Geschwindigkeit. Ist das magnetische Feld homogen, so bewegen sich die Teilchen dabei auf einer Kreisbahn.

Zum Artikel Zu den Aufgaben

Selbstinduktion und Induktivität

Grundwissen

  • Selbstinduktion ist die Induktionswirkung eines Stromes auf seinen eigenen Leiterkreis
  • Die Induktionsspannung \(U_{\rm{i}}\) ist proportional zur Änderungsrate \(\frac{dI}{dt}\)
  • Es gilt \(U_{\rm{i}}=-L\cdot \frac{dI}{dt}\), wobei \(L\) die sog. Induktivität ist

Zum Artikel Zu den Aufgaben
Grundwissen

  • Selbstinduktion ist die Induktionswirkung eines Stromes auf seinen eigenen Leiterkreis
  • Die Induktionsspannung \(U_{\rm{i}}\) ist proportional zur Änderungsrate \(\frac{dI}{dt}\)
  • Es gilt \(U_{\rm{i}}=-L\cdot \frac{dI}{dt}\), wobei \(L\) die sog. Induktivität ist

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis ungedämpft

Grundwissen

  • Ein Schwingkreis besteht zentral aus einem Kondensator mit Kapazität \(C\), der zu Beginn mittels elektrischer Quelle auf \(U_0\) aufgeladen wird, und einer Spule der Induktivität \(L\).
  • Im ungedämpften Fall schwingt der Kreis harmonisch mit der Schwingungsdauer \(T = 2 \cdot \pi \cdot \sqrt {L \cdot C}\)
  • Die Spannung über dem Kondensator wird beschrieben durch \(U_C(t) = \left| {{U_0}} \right| \cdot \cos \left( {{\omega _0} \cdot t} \right)\quad {\rm{mit}}\quad{\omega _0} = \sqrt {\frac{1}{L \cdot C}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Schwingkreis besteht zentral aus einem Kondensator mit Kapazität \(C\), der zu Beginn mittels elektrischer Quelle auf \(U_0\) aufgeladen wird, und einer Spule der Induktivität \(L\).
  • Im ungedämpften Fall schwingt der Kreis harmonisch mit der Schwingungsdauer \(T = 2 \cdot \pi \cdot \sqrt {L \cdot C}\)
  • Die Spannung über dem Kondensator wird beschrieben durch \(U_C(t) = \left| {{U_0}} \right| \cdot \cos \left( {{\omega _0} \cdot t} \right)\quad {\rm{mit}}\quad{\omega _0} = \sqrt {\frac{1}{L \cdot C}}\)

Zum Artikel Zu den Aufgaben

Magnetfeld von geraden Leitern

Grundwissen

  • Wenn durch einen geraden und sehr langen Leiter ein elektrischer Strom fließt, dann haben die Feldlinien des magnetischen Feldes die Form von Kreisen, die in Ebenen senkrecht zu dem Leiter verlaufen und ihren Mittelpunkt im Leiter haben.
  • Die Orientierung des Feldes kann man mit der ersten Rechte-Faust-Regel bestimmen.
  • Ist \(I\) die Stärke des Stroms im Leiter und \(r\) der Abstand eines Punktes zum Leiter, dann berechnet sich der Betrag der magnetischen Flussdichte \(B\) an diesem Punkt durch \(B = {\mu _0} \cdot \frac{1}{{2 \, \pi \cdot r}} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn durch einen geraden und sehr langen Leiter ein elektrischer Strom fließt, dann haben die Feldlinien des magnetischen Feldes die Form von Kreisen, die in Ebenen senkrecht zu dem Leiter verlaufen und ihren Mittelpunkt im Leiter haben.
  • Die Orientierung des Feldes kann man mit der ersten Rechte-Faust-Regel bestimmen.
  • Ist \(I\) die Stärke des Stroms im Leiter und \(r\) der Abstand eines Punktes zum Leiter, dann berechnet sich der Betrag der magnetischen Flussdichte \(B\) an diesem Punkt durch \(B = {\mu _0} \cdot \frac{1}{{2 \, \pi \cdot r}} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis gedämpft

Grundwissen

  • Der Widerstand der Bauteile in einem Schwingkreis führt zur Dämpfung der Schwingung.
  • Die Differentialgleichung der gedämpften elektromagnetischen Schwingung ist \(L \cdot \ddot Q + \frac{Q}{C} + R \cdot \dot Q = 0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Widerstand der Bauteile in einem Schwingkreis führt zur Dämpfung der Schwingung.
  • Die Differentialgleichung der gedämpften elektromagnetischen Schwingung ist \(L \cdot \ddot Q + \frac{Q}{C} + R \cdot \dot Q = 0\).

Zum Artikel Zu den Aufgaben