Direkt zum Inhalt
Suchergebnisse 121 - 150 von 151

Schwache Wechselwirkung

Grundwissen

  • Nur Teilchen mit einer von Null verschiedenen schwachen Ladung unterliegen der schwachen Wechselwirkung.
  • Die schwache Wechselwirkung wird durch Absorption und Emission von \(W^+\)-, \(W^-\), und \(Z\)-Bosonen vermittelt.
  • Alle Materieteilchen besitzen eine schwache Ladung von \(I=+\frac{1}{2}\) oder \(I=-\frac{1}{2}\). In ihrer Darstellung ist das Vorzeichen oft über die Ausrichtung der Spitze bzw. Rundung codiert.
  • Von den Botenteilchen haben nur die \(W\)-Bosonen eine schwache Ladung von \(I=\pm 1\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Nur Teilchen mit einer von Null verschiedenen schwachen Ladung unterliegen der schwachen Wechselwirkung.
  • Die schwache Wechselwirkung wird durch Absorption und Emission von \(W^+\)-, \(W^-\), und \(Z\)-Bosonen vermittelt.
  • Alle Materieteilchen besitzen eine schwache Ladung von \(I=+\frac{1}{2}\) oder \(I=-\frac{1}{2}\). In ihrer Darstellung ist das Vorzeichen oft über die Ausrichtung der Spitze bzw. Rundung codiert.
  • Von den Botenteilchen haben nur die \(W\)-Bosonen eine schwache Ladung von \(I=\pm 1\).

Zum Artikel Zu den Aufgaben

Polarisation von Licht - Einführung

Grundwissen

  • Die Polarisation beschreibt die Schwingungsrichtung einer Transversalwelle.
  • Lineare Polarisationsfilter können nur von Licht einer bestimmten Schwingungsrichtung passiert werden.
  • Laserlicht und das Licht von Computerdisplays ist polarisiert.

Zum Artikel
Grundwissen

  • Die Polarisation beschreibt die Schwingungsrichtung einer Transversalwelle.
  • Lineare Polarisationsfilter können nur von Licht einer bestimmten Schwingungsrichtung passiert werden.
  • Laserlicht und das Licht von Computerdisplays ist polarisiert.

Zum Artikel Zu den Aufgaben

Energiezustände im BOHRschen Atommodell

Grundwissen

  • Durch die Quantenbedingung von BOHR kann die Energie eines Atoms nur bestimmte Werte annehmen.
  • Die Energie, um Wasserstoff aus dem Grundzustand heraus zu ionisieren beträgt \(13{,}6\,\rm{eV}\) (Ionisierungsenergie).
  • Die Gesamtenergie eines Elektrons im Wasserstoffatom gilt \({E_{{\rm{ges}}{\rm{,n}}}} = - R_{\infty} \cdot h \cdot c \cdot \frac{1}{{{n^2}}}\), wobei \(R_{\infty}\) die Rydberg-Konstante ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Durch die Quantenbedingung von BOHR kann die Energie eines Atoms nur bestimmte Werte annehmen.
  • Die Energie, um Wasserstoff aus dem Grundzustand heraus zu ionisieren beträgt \(13{,}6\,\rm{eV}\) (Ionisierungsenergie).
  • Die Gesamtenergie eines Elektrons im Wasserstoffatom gilt \({E_{{\rm{ges}}{\rm{,n}}}} = - R_{\infty} \cdot h \cdot c \cdot \frac{1}{{{n^2}}}\), wobei \(R_{\infty}\) die Rydberg-Konstante ist.

Zum Artikel Zu den Aufgaben

Gigantische RYDBERG-Moleküle - Von der Theorie zum Experiment

Grundwissen
Grundwissen

EINSTEINs Postulate

Grundwissen

  • Erstes Postulat (Relativitätsprinzip): Alle Inertialsysteme sind bezüglich aller physikalischen Gesetze gleichberechtigt.
  • Zweites Postulat (Konstanz der Lichtgeschwindigkeit): Die Vakuumlichtgeschwindigkeit \(c\) ist in allen Inertialsystemen gleich groß.

Zum Artikel
Grundwissen

  • Erstes Postulat (Relativitätsprinzip): Alle Inertialsysteme sind bezüglich aller physikalischen Gesetze gleichberechtigt.
  • Zweites Postulat (Konstanz der Lichtgeschwindigkeit): Die Vakuumlichtgeschwindigkeit \(c\) ist in allen Inertialsystemen gleich groß.

Zum Artikel Zu den Aufgaben

Aufbau der Sonne

Grundwissen

  • Der Kern der Sonne stellt einen Fusionsreaktor dar, der letztendlich für die abgestrahlte Energie verantwortlich ist.
  •  Im Inneren der Sonne wird die Energie zunächst durch Strahlung (Strahlenzone), dann durch Konvektion (Konvektionszone) transportiert.
  • In der Photosphäre entsteht der kontinuierliche Teil der Sonnenstrahlung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Kern der Sonne stellt einen Fusionsreaktor dar, der letztendlich für die abgestrahlte Energie verantwortlich ist.
  •  Im Inneren der Sonne wird die Energie zunächst durch Strahlung (Strahlenzone), dann durch Konvektion (Konvektionszone) transportiert.
  • In der Photosphäre entsteht der kontinuierliche Teil der Sonnenstrahlung.

Zum Artikel Zu den Aufgaben

Sterngeburt

Grundwissen

  • Gas-, Staub- und Molekülwolken an den Rändern der Spiralarme der Galaxis sind Gebiete der Sternentstehung, da hier interstellare Masse konzentriert ist.
  • Das JEANS-Kriterium besagt, dass eine Gaswolke kollabiert und ein Stern entstehen kann, wenn ihre Masse größer als die JEANS-Masse ist.

Zum Artikel
Grundwissen

  • Gas-, Staub- und Molekülwolken an den Rändern der Spiralarme der Galaxis sind Gebiete der Sternentstehung, da hier interstellare Masse konzentriert ist.
  • Das JEANS-Kriterium besagt, dass eine Gaswolke kollabiert und ein Stern entstehen kann, wenn ihre Masse größer als die JEANS-Masse ist.

Zum Artikel Zu den Aufgaben

Entwicklung schwerer Sterne

Grundwissen

  • Massereiche Sterne der Hauptreihe kollabieren unter ihrer eigenen Gravitation, wenn im Kern kein Energiegewinn mittels Fusion mehr möglich ist.
  • Neutronensterne besitzen kleine Radien von etwas \(10\) bis \(13\,\rm{km}\) und eine extrem hohe Dichte.
  • Schnell rotierende Neutronensterne können gerichtete Radiostrahlung aussenden, die bei günstiger geometrischer Lage auf der Erde detektiert werden können. Solche Sterne nennt man Pulsare.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Massereiche Sterne der Hauptreihe kollabieren unter ihrer eigenen Gravitation, wenn im Kern kein Energiegewinn mittels Fusion mehr möglich ist.
  • Neutronensterne besitzen kleine Radien von etwas \(10\) bis \(13\,\rm{km}\) und eine extrem hohe Dichte.
  • Schnell rotierende Neutronensterne können gerichtete Radiostrahlung aussenden, die bei günstiger geometrischer Lage auf der Erde detektiert werden können. Solche Sterne nennt man Pulsare.

Zum Artikel Zu den Aufgaben

Kernkraft

Grundwissen

  • Die Kernkraft basiert auf der starken Wechselwirkung
  • Die Kernkraft sorgt bei kleinen Nukleonenabständen von etwa \(0{,}5\,\rm{fm}\) bis  \(2{,}5\,\rm{fm}\) für eine Anziehung der Nukleonen und hält somit den Atomkern zusammen.
  • Die Kernkraft ist wesentlich stärker als die Gravitationswechselwirkung oder die elektromagnetische Wechselwirkung.
  • Für den Radius eines Atomkerns gilt näherungsweise \({{r_k} = 1{,}4 \cdot {10^{ - 15}}\,\rm{m} \cdot \sqrt[3]{A}}\), wo \(A\) die Nukleonenanzahl ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Kernkraft basiert auf der starken Wechselwirkung
  • Die Kernkraft sorgt bei kleinen Nukleonenabständen von etwa \(0{,}5\,\rm{fm}\) bis  \(2{,}5\,\rm{fm}\) für eine Anziehung der Nukleonen und hält somit den Atomkern zusammen.
  • Die Kernkraft ist wesentlich stärker als die Gravitationswechselwirkung oder die elektromagnetische Wechselwirkung.
  • Für den Radius eines Atomkerns gilt näherungsweise \({{r_k} = 1{,}4 \cdot {10^{ - 15}}\,\rm{m} \cdot \sqrt[3]{A}}\), wo \(A\) die Nukleonenanzahl ist.

Zum Artikel Zu den Aufgaben

FEYNMAN-Diagramme

Grundwissen

  • FEYNMAN-Diagramme sind schematische Zeit-Ort-Diagramme von Teilchen (nicht die Bahnkurven) und bieten eine übersichtliche Darstellung von Wechselwirkungsprozessen.
  • Oft haben die Diagramme äußere Linien, welche Materieteilchen darstellen und innere Linien, die Botenteilchen darstellen.
  • Wechselwirkungspunkte, an denen Linien zusammentreffen nennt man Vertices (Singular: Vertex).

Zum Artikel Zu den Aufgaben
Grundwissen

  • FEYNMAN-Diagramme sind schematische Zeit-Ort-Diagramme von Teilchen (nicht die Bahnkurven) und bieten eine übersichtliche Darstellung von Wechselwirkungsprozessen.
  • Oft haben die Diagramme äußere Linien, welche Materieteilchen darstellen und innere Linien, die Botenteilchen darstellen.
  • Wechselwirkungspunkte, an denen Linien zusammentreffen nennt man Vertices (Singular: Vertex).

Zum Artikel Zu den Aufgaben

Streuversuch und Atommodell von RUTHERFORD

Grundwissen

  • Im RUTHERFORDschen Streuversuch wird eine dünne Metallfolie mit \(\alpha\)-Teilchen (positiv geladen) beschossen.
  • Entgegen den Erwartungen werden einige wenige \(\alpha\)-Teilchen von der Folie sogar zurückgestreut.
  • Das Modell von RUTHERFORD führt den sehr kleinen, positiv geladenen Atomkern ein, in dem fast die gesamte Masse des Atoms vereinigt ist.
  • Das Modell kann nicht erklären, warum die Elektronen nicht in den Kern stürzen und wie diskrete Spektrallinien zustande kommen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im RUTHERFORDschen Streuversuch wird eine dünne Metallfolie mit \(\alpha\)-Teilchen (positiv geladen) beschossen.
  • Entgegen den Erwartungen werden einige wenige \(\alpha\)-Teilchen von der Folie sogar zurückgestreut.
  • Das Modell von RUTHERFORD führt den sehr kleinen, positiv geladenen Atomkern ein, in dem fast die gesamte Masse des Atoms vereinigt ist.
  • Das Modell kann nicht erklären, warum die Elektronen nicht in den Kern stürzen und wie diskrete Spektrallinien zustande kommen.

Zum Artikel Zu den Aufgaben

Sonnenspektrum

Grundwissen

  • Das von der Sonne kommende Licht ähnelt dem Spektrum eines schwarzen Körpers.
  • Das Maximum der Strahlung liegt bei etwa \(550\,\rm{nm}\), also im Bereich von blau-grünem Licht.
  • Im Sonnenspektrum zeigen sich viele Absorptionslinien (FRAUNHOFER-Linien), die Rückschlüsse z.B. auf die Zusammensetzung unsere Atmosphäre ermöglichen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das von der Sonne kommende Licht ähnelt dem Spektrum eines schwarzen Körpers.
  • Das Maximum der Strahlung liegt bei etwa \(550\,\rm{nm}\), also im Bereich von blau-grünem Licht.
  • Im Sonnenspektrum zeigen sich viele Absorptionslinien (FRAUNHOFER-Linien), die Rückschlüsse z.B. auf die Zusammensetzung unsere Atmosphäre ermöglichen.

Zum Artikel Zu den Aufgaben

Ultraviolett

Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(380\,{\rm nm}\) und \(1\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(789\,{\rm THz}\) bis \(300\,{\rm PHz}\)
  • Anwendungen: Schwarzlichtlampen, Geldscheinprüfung, Härtung von Klebstoffen

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(380\,{\rm nm}\) und \(1\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(789\,{\rm THz}\) bis \(300\,{\rm PHz}\)
  • Anwendungen: Schwarzlichtlampen, Geldscheinprüfung, Härtung von Klebstoffen

Zum Artikel Zu den Aufgaben

Infrarot

Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm mm}\) und \(780\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(300\,{\rm GHz}\) bis \(385\,{\rm THz}\)
  • Anwendungen: Fernbedienungen, Temperaturmessung, Vegetationsbestimmung

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm mm}\) und \(780\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(300\,{\rm GHz}\) bis \(385\,{\rm THz}\)
  • Anwendungen: Fernbedienungen, Temperaturmessung, Vegetationsbestimmung

Zum Artikel Zu den Aufgaben

Starke und schwache Kausalität

Grundwissen

  • Schwacher Kausalität liegt vor, wenn exakt gleiche Ursachen die stets gleiche Wirkung zur Folge haben.
  •  Starker Kausalität liegt vor, wenn ähnliche Ursachen eine ähnliche Wirkung zur Folge haben. Kleine Änderungen im Ausgangszustand führen nur zu kleinen Änderungen im Ergebnis.
  • Viele Systeme in der Natur sind labile Gleichgewichtszustände. Hier liegt keine starke Kausalität vor.

Zum Artikel
Grundwissen

  • Schwacher Kausalität liegt vor, wenn exakt gleiche Ursachen die stets gleiche Wirkung zur Folge haben.
  •  Starker Kausalität liegt vor, wenn ähnliche Ursachen eine ähnliche Wirkung zur Folge haben. Kleine Änderungen im Ausgangszustand führen nur zu kleinen Änderungen im Ergebnis.
  • Viele Systeme in der Natur sind labile Gleichgewichtszustände. Hier liegt keine starke Kausalität vor.

Zum Artikel Zu den Aufgaben

Video zum Oersted-Versuch (I)

Weblink

Das Video demonstriert den Oersted-Versuch. Es zeigt wie sich ein Permanentmagnet im Magnetfeld einer stromdurchflossenen Spule dreht. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Das Video demonstriert den Oersted-Versuch. Es zeigt wie sich ein Permanentmagnet im Magnetfeld einer stromdurchflossenen Spule dreht. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Video zur Regel von Lenz

Weblink

Ein kurzes Video, das einen Versuch zur Lenz'schen Regel zeigt. Ein Neodym-Magnet wird durch ein Kupfer- und ein Kunststoffrohr fallen gelassen. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Ein kurzes Video, das einen Versuch zur Lenz'schen Regel zeigt. Ein Neodym-Magnet wird durch ein Kupfer- und ein Kunststoffrohr fallen gelassen. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Bildgebende Verfahren in der Weltraum-Teleskopie

Weblink

In dieser Unterrichtseinheit zum Thema bildgebende Verfahren wird anhand eines Videos der Nutzen des elektromagnetischen Wellenspektrums für die Weltraum-Teleskopie deutlich gemacht. Die Schülerinnen und Schüler erarbeiten sich dabei anhand praktischer Beispiele und methodisch variierend einen Überblick über die verwendeten bildgebenden Verfahren. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden.

Zur Übersicht Zum externen Weblink
Weblink

In dieser Unterrichtseinheit zum Thema bildgebende Verfahren wird anhand eines Videos der Nutzen des elektromagnetischen Wellenspektrums für die Weltraum-Teleskopie deutlich gemacht. Die Schülerinnen und Schüler erarbeiten sich dabei anhand praktischer Beispiele und methodisch variierend einen Überblick über die verwendeten bildgebenden Verfahren. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden.

Zur Übersicht Zum externen Weblink

Video zur Lorentzkraft

Weblink

Dieses Video zeigt ein Experiment zur Veranschaulichung der Lorentzkraft, die auf einen stromdurchflossenen Leiter in einem Magnetfeld wirkt. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zum externen Weblink
Weblink

Dieses Video zeigt ein Experiment zur Veranschaulichung der Lorentzkraft, die auf einen stromdurchflossenen Leiter in einem Magnetfeld wirkt. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zum externen Weblink

LHC-Closer

Weblink

Informationen rund um das CERN und den LHC: Geschichte, Technik, Anwendungen, Finanzen und vieles mehr. Physikalische Grundlagen (Magnetfeld, Energie und Impuls, Vakuum…) sind ansprechend auf Oberstufenniveau erklärt (mit Formeln).

Zum externen Weblink
Weblink

Informationen rund um das CERN und den LHC: Geschichte, Technik, Anwendungen, Finanzen und vieles mehr. Physikalische Grundlagen (Magnetfeld, Energie und Impuls, Vakuum…) sind ansprechend auf Oberstufenniveau erklärt (mit Formeln).

Zum externen Weblink

Unsichtbares Licht

Weblink

In dieser Unterrichtseinheit zum "unsichtbaren Licht" erfahren die Lernenden, dass man Licht als elektromagnetische Welle verstehen kann und dass das Wellenlängenspektrum dieser Strahlung weit über den sichtbaren Bereich hinausgeht. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden.

Zum externen Weblink
Weblink

In dieser Unterrichtseinheit zum "unsichtbaren Licht" erfahren die Lernenden, dass man Licht als elektromagnetische Welle verstehen kann und dass das Wellenlängenspektrum dieser Strahlung weit über den sichtbaren Bereich hinausgeht. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden.

Zum externen Weblink

Video eines einfachen Gleichstrommotors

Weblink

Dieses Video zeigt einen Gleichstrommotor, der sehr einfach zuhause nachbaubar ist. Dafür braucht man lediglich eine Batterie, einen Magneten und ein Stück Draht. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zum externen Weblink
Weblink

Dieses Video zeigt einen Gleichstrommotor, der sehr einfach zuhause nachbaubar ist. Dafür braucht man lediglich eine Batterie, einen Magneten und ein Stück Draht. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zum externen Weblink

Video zum Thomschon'schen Ringversuch

Weblink

Dieses Video zeigt den Thomson'schen Ringversuch, bei dem ein Aluminiumring von einem Magnetfeld, das von einer Spule induziert wird, beschleunigt und in die Luft geschleudert wird. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video zeigt den Thomson'schen Ringversuch, bei dem ein Aluminiumring von einem Magnetfeld, das von einer Spule induziert wird, beschleunigt und in die Luft geschleudert wird. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Video zur Funktionsweise eines Kompasses

Weblink

Dieses Video zeigtdie Funktionsweise eines Kompass mithilfe eines Stabmagneten. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zum externen Weblink
Weblink

Dieses Video zeigtdie Funktionsweise eines Kompass mithilfe eines Stabmagneten. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zum externen Weblink

Video über eine Induktions-Taschenlampe

Weblink

Dieses Video zeigt eine Taschenlampe, die durch Induktion betrieben wird. Durch Schütteln wird ein Permanentmagnet durch eine Spule geführt und induziert dort eine Spannung, die die Lampe zum Leuchten bringt. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video zeigt eine Taschenlampe, die durch Induktion betrieben wird. Durch Schütteln wird ein Permanentmagnet durch eine Spule geführt und induziert dort eine Spannung, die die Lampe zum Leuchten bringt. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Unterrichtsmaterial zu Mobilfunk

Weblink

Das Bundesamt für Strahlenschutz bietet hier Unterrichtsmaterial samt Arbeitsblättern zum Thema Mobilfunk und elektromagnetischer Strahlenbelastung, dass bereits ab Klasse 5 eingesetzt werden kann.

Zum externen Weblink
Weblink

Das Bundesamt für Strahlenschutz bietet hier Unterrichtsmaterial samt Arbeitsblättern zum Thema Mobilfunk und elektromagnetischer Strahlenbelastung, dass bereits ab Klasse 5 eingesetzt werden kann.

Zum externen Weblink

Video eines kontaklosen elastischen Stoßes

Weblink

Dieses Video zeigt einen kontaktlosen elastischen Stoß zwischen zwei Wagen, die mit gegeneinander ausgerichteten Permanentmagneten augestattet sind. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zum externen Weblink
Weblink

Dieses Video zeigt einen kontaktlosen elastischen Stoß zwischen zwei Wagen, die mit gegeneinander ausgerichteten Permanentmagneten augestattet sind. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zum externen Weblink

Video eines einfachen Gleichstromzugs

Weblink

Dieses Video zeigt einen Gleichstromzug, gebaut aus einer Batterie, zwei Magneten und einem, zu einer langen Spule gewickelten, Draht. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zum externen Weblink
Weblink

Dieses Video zeigt einen Gleichstromzug, gebaut aus einer Batterie, zwei Magneten und einem, zu einer langen Spule gewickelten, Draht. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zum externen Weblink

Lernaufgabe: Kontaktloser Strom

Weblink

Diese Lernaufgabe der iMINT-Akademie Berlin wird aus dem fachübergreifenden Thema „Verbraucherbildung“ entwickelt. Das drahtlose Aufladen von Smartphones und Zahnbürsten beruht auf der elektromagnetischen Induktion und findet sich häufig im Lebensalltag der Schülerinnen und Schüler. Eine Serie von kostengünstigen und minimalistischen Freihandexperimenten eröffnet individualisierte Zugänge für ein Erkunden und Beschreiben von Einflussfaktoren der Induktion.
Dieses OER-Material und weiteres Material der iMINT-Akademie Berlin gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik-1

Zum externen Weblink
Weblink

Diese Lernaufgabe der iMINT-Akademie Berlin wird aus dem fachübergreifenden Thema „Verbraucherbildung“ entwickelt. Das drahtlose Aufladen von Smartphones und Zahnbürsten beruht auf der elektromagnetischen Induktion und findet sich häufig im Lebensalltag der Schülerinnen und Schüler. Eine Serie von kostengünstigen und minimalistischen Freihandexperimenten eröffnet individualisierte Zugänge für ein Erkunden und Beschreiben von Einflussfaktoren der Induktion.
Dieses OER-Material und weiteres Material der iMINT-Akademie Berlin gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik-1

Zum externen Weblink

Video zur Leiterschaukel

Weblink

Dieses Video zeigt das Experiment eines stromdurchflossenen Leiters in einem Magnetfeld, der sogenannten Leiterschaukel. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video zeigt das Experiment eines stromdurchflossenen Leiters in einem Magnetfeld, der sogenannten Leiterschaukel. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink