Direkt zum Inhalt
Suchergebnisse 61 - 80 von 80

Energiebilanz beim Alpha-Zerfall

Grundwissen

  • Beim Alpha-Zerfall emittiert der Mutterkern \(\rm{X}\) ein \(\alpha\)-Teilchen (\(\rm{He}\)-Kern). Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(2\), die Massenzahl um \(4\) kleiner als die des Mutterkerns.
  • Die Reaktionsgleichung lautet \(_{Z}^{A}{\rm{X}}\to\;_{Z-2}^{A-4}{\rm{Y}} +\;_{2}^{4}{\rm{He }}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q = \left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-m_{\rm{A}}\left(_{2}^{4}{\rm{He }} \right) \right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Alpha-Zerfall emittiert der Mutterkern \(\rm{X}\) ein \(\alpha\)-Teilchen (\(\rm{He}\)-Kern). Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(2\), die Massenzahl um \(4\) kleiner als die des Mutterkerns.
  • Die Reaktionsgleichung lautet \(_{Z}^{A}{\rm{X}}\to\;_{Z-2}^{A-4}{\rm{Y}} +\;_{2}^{4}{\rm{He }}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q = \left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-m_{\rm{A}}\left(_{2}^{4}{\rm{He }} \right) \right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Energiebilanz beim EC-Prozess oder K-Einfang

Grundwissen

  • Beim EC-Prozess oder K-Einfang wandelt sich im Mutterkern \(\rm{X}\) ein Proton zusammen mit einem Elektron (meist aus der K-Schale) in ein Neutron um. Gleichzeitig wird ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}} +\;_{-1}^0{\rm{e^-}} \to\;_{Z-1}^A{\rm{Y}} +\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim EC-Prozess oder K-Einfang wandelt sich im Mutterkern \(\rm{X}\) ein Proton zusammen mit einem Elektron (meist aus der K-Schale) in ein Neutron um. Gleichzeitig wird ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}} +\;_{-1}^0{\rm{e^-}} \to\;_{Z-1}^A{\rm{Y}} +\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Starke Wechselwirkung

Grundwissen

  • Der starken Wechselwirkung unterliegen nur Teilchen, die eine Farbladung besitzen, also auf Quarks. Es gibt 6 verschiedene Farbladungen: rot, grün, blau, anti-rot, anti-grün und anti-blau.
  • Die Botenteilchen der starken Wechselwirkung sind die acht Gluonen. Diese tragen selbst unterschiedliche Farbladungen.
  • Es gibt keine freien Quarks, sie finden sich immer in Zweier- oder Dreiergruppen.

Zum Artikel
Grundwissen

  • Der starken Wechselwirkung unterliegen nur Teilchen, die eine Farbladung besitzen, also auf Quarks. Es gibt 6 verschiedene Farbladungen: rot, grün, blau, anti-rot, anti-grün und anti-blau.
  • Die Botenteilchen der starken Wechselwirkung sind die acht Gluonen. Diese tragen selbst unterschiedliche Farbladungen.
  • Es gibt keine freien Quarks, sie finden sich immer in Zweier- oder Dreiergruppen.

Zum Artikel Zu den Aufgaben

Energiebilanz bei Kernreaktionen

Grundwissen

  • Der Q-Wert einer Kernreaktion ist die Summe der nach der Kernreaktion vorliegenden kinetischen Energien und der Anregungsenergie \({E^*}\left({\rm{Y}}\right)\) von \(\rm{Y}\) vermindert um die vor der Reaktion vorliegenden kinetischen Energien.
  • Ist der Q-Wert positiv, so ist die Kernreaktion exotherm, ist der Q-Wert negativ, so ist die Kernreaktion endotherm.
  • Der Q-Wert lässt sich berechnen als die Differenz der Ruheenergien vor der Reaktion und der Ruheenergien nach der Reaktion: \(Q = \left( {{m_0}\left( {\rm{x}} \right) \cdot {c^2} + {m_0}\left( {\rm{X}} \right) \cdot {c^2}} \right) - \left( {{m_0}\left( {\rm{y}} \right) \cdot {c^2} + {m_0}\left( {\rm{Y}} \right) \cdot {c^2}} \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Q-Wert einer Kernreaktion ist die Summe der nach der Kernreaktion vorliegenden kinetischen Energien und der Anregungsenergie \({E^*}\left({\rm{Y}}\right)\) von \(\rm{Y}\) vermindert um die vor der Reaktion vorliegenden kinetischen Energien.
  • Ist der Q-Wert positiv, so ist die Kernreaktion exotherm, ist der Q-Wert negativ, so ist die Kernreaktion endotherm.
  • Der Q-Wert lässt sich berechnen als die Differenz der Ruheenergien vor der Reaktion und der Ruheenergien nach der Reaktion: \(Q = \left( {{m_0}\left( {\rm{x}} \right) \cdot {c^2} + {m_0}\left( {\rm{X}} \right) \cdot {c^2}} \right) - \left( {{m_0}\left( {\rm{y}} \right) \cdot {c^2} + {m_0}\left( {\rm{Y}} \right) \cdot {c^2}} \right)\)

Zum Artikel Zu den Aufgaben

Lawson-Kriterium der Kernfusion

Ausblick
Ausblick

Polarisation von Licht - Einführung

Grundwissen

  • Die Polarisation beschreibt die Schwingungsrichtung einer Transversalwelle.
  • Lineare Polarisationsfilter können nur von Licht einer bestimmten Schwingungsrichtung passiert werden.
  • Laserlicht und das Licht von Computerdisplays ist polarisiert.

Zum Artikel
Grundwissen

  • Die Polarisation beschreibt die Schwingungsrichtung einer Transversalwelle.
  • Lineare Polarisationsfilter können nur von Licht einer bestimmten Schwingungsrichtung passiert werden.
  • Laserlicht und das Licht von Computerdisplays ist polarisiert.

Zum Artikel Zu den Aufgaben

Versuche von HALLWACHS mit dem Elektroskop

Versuche

  • Der Versuch zeigt den prinzipiellen Photoeffekt sowie die Abhängigkeit des Elektronenaustritts von Frequenz und Intensität des Lichts anhand der Beobachtung des Ausschlags eines Elektroskops

Zum Artikel
Versuche

  • Der Versuch zeigt den prinzipiellen Photoeffekt sowie die Abhängigkeit des Elektronenaustritts von Frequenz und Intensität des Lichts anhand der Beobachtung des Ausschlags eines Elektroskops

Zum Artikel Zu den Aufgaben

Konstruktionsstrahlen

Versuche
Versuche

Werner HEISENBERG (1901 -1976)

Geschichte
Geschichte

Originalarbeit von JÖNSSON

Geschichte
Geschichte

Geschichte der Polarisation

Geschichte
Geschichte

Kernkraft

Grundwissen

  • Die Kernkraft basiert auf der starken Wechselwirkung
  • Die Kernkraft sorgt bei kleinen Nukleonenabständen von etwa \(0{,}5\,\rm{fm}\) bis  \(2{,}5\,\rm{fm}\) für eine Anziehung der Nukleonen und hält somit den Atomkern zusammen.
  • Die Kernkraft ist wesentlich stärker als die Gravitationswechselwirkung oder die elektromagnetische Wechselwirkung.
  • Für den Radius eines Atomkerns gilt näherungsweise \({{r_k} = 1{,}4 \cdot {10^{ - 15}}\,\rm{m} \cdot \sqrt[3]{A}}\), wo \(A\) die Nukleonenanzahl ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Kernkraft basiert auf der starken Wechselwirkung
  • Die Kernkraft sorgt bei kleinen Nukleonenabständen von etwa \(0{,}5\,\rm{fm}\) bis  \(2{,}5\,\rm{fm}\) für eine Anziehung der Nukleonen und hält somit den Atomkern zusammen.
  • Die Kernkraft ist wesentlich stärker als die Gravitationswechselwirkung oder die elektromagnetische Wechselwirkung.
  • Für den Radius eines Atomkerns gilt näherungsweise \({{r_k} = 1{,}4 \cdot {10^{ - 15}}\,\rm{m} \cdot \sqrt[3]{A}}\), wo \(A\) die Nukleonenanzahl ist.

Zum Artikel Zu den Aufgaben

FEYNMAN-Diagramme

Grundwissen

  • FEYNMAN-Diagramme sind schematische Zeit-Ort-Diagramme von Teilchen (nicht die Bahnkurven) und bieten eine übersichtliche Darstellung von Wechselwirkungsprozessen.
  • Oft haben die Diagramme äußere Linien, welche Materieteilchen darstellen und innere Linien, die Botenteilchen darstellen.
  • Wechselwirkungspunkte, an denen Linien zusammentreffen nennt man Vertices (Singular: Vertex).

Zum Artikel Zu den Aufgaben
Grundwissen

  • FEYNMAN-Diagramme sind schematische Zeit-Ort-Diagramme von Teilchen (nicht die Bahnkurven) und bieten eine übersichtliche Darstellung von Wechselwirkungsprozessen.
  • Oft haben die Diagramme äußere Linien, welche Materieteilchen darstellen und innere Linien, die Botenteilchen darstellen.
  • Wechselwirkungspunkte, an denen Linien zusammentreffen nennt man Vertices (Singular: Vertex).

Zum Artikel Zu den Aufgaben

Ultraviolett

Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(380\,{\rm nm}\) und \(1\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(789\,{\rm THz}\) bis \(300\,{\rm PHz}\)
  • Anwendungen: Schwarzlichtlampen, Geldscheinprüfung, Härtung von Klebstoffen

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(380\,{\rm nm}\) und \(1\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(789\,{\rm THz}\) bis \(300\,{\rm PHz}\)
  • Anwendungen: Schwarzlichtlampen, Geldscheinprüfung, Härtung von Klebstoffen

Zum Artikel Zu den Aufgaben

Infrarot

Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm mm}\) und \(780\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(300\,{\rm GHz}\) bis \(385\,{\rm THz}\)
  • Anwendungen: Fernbedienungen, Temperaturmessung, Vegetationsbestimmung

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm mm}\) und \(780\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(300\,{\rm GHz}\) bis \(385\,{\rm THz}\)
  • Anwendungen: Fernbedienungen, Temperaturmessung, Vegetationsbestimmung

Zum Artikel Zu den Aufgaben

Grundversuch zum Brechungsgesetz

Versuche

  • Messwertaufnahme der Einfalls- und Ausfallswinkel beim Übergang von Luft zu Plexiglas
  • Erstellung und Analyse eines Diagramm \({\alpha _{{\rm{L}}}}\)-\({\alpha _{{\rm{PG}}}}\)-Diagramms
  • Vertiefung: Brechungsgesetz

Zum Artikel
Versuche

  • Messwertaufnahme der Einfalls- und Ausfallswinkel beim Übergang von Luft zu Plexiglas
  • Erstellung und Analyse eines Diagramm \({\alpha _{{\rm{L}}}}\)-\({\alpha _{{\rm{PG}}}}\)-Diagramms
  • Vertiefung: Brechungsgesetz

Zum Artikel Zu den Aufgaben

LHC-Closer

Weblink

Informationen rund um das CERN und den LHC: Geschichte, Technik, Anwendungen, Finanzen und vieles mehr. Physikalische Grundlagen (Magnetfeld, Energie und Impuls, Vakuum…) sind ansprechend auf Oberstufenniveau erklärt (mit Formeln).

Zur Übersicht Zum externen Weblink
Weblink

Informationen rund um das CERN und den LHC: Geschichte, Technik, Anwendungen, Finanzen und vieles mehr. Physikalische Grundlagen (Magnetfeld, Energie und Impuls, Vakuum…) sind ansprechend auf Oberstufenniveau erklärt (mit Formeln).

Zur Übersicht Zum externen Weblink

Unsichtbares Licht

Weblink

In dieser Unterrichtseinheit zum "unsichtbaren Licht" erfahren die Lernenden, dass man Licht als elektromagnetische Welle verstehen kann und dass das Wellenlängenspektrum dieser Strahlung weit über den sichtbaren Bereich hinausgeht. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden.

Zum externen Weblink
Weblink

In dieser Unterrichtseinheit zum "unsichtbaren Licht" erfahren die Lernenden, dass man Licht als elektromagnetische Welle verstehen kann und dass das Wellenlängenspektrum dieser Strahlung weit über den sichtbaren Bereich hinausgeht. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden.

Zum externen Weblink