Direkt zum Inhalt
Suchergebnisse 121 - 150 von 188

DOPPLER-Effekt

Grundwissen

  • Der Doppler-Effekt ist die zeitliche Stauchung bzw. Dehnung einer Welle durch die Veränderungen des Abstands zwischen Sender und Empfänger.
  • Man unterscheidet häufig, ob sich der Sender oder der Empfänger bewegt. Der andere ist zur Vereinfachung in Ruhe.
  • Verkleinert sich der Abstand Sender-Empfänger so steigt die wahrgenommene Frequenz.
  • Vergrößert sich der Abstand so sinkt die wahrgenommene Frequenz,

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Doppler-Effekt ist die zeitliche Stauchung bzw. Dehnung einer Welle durch die Veränderungen des Abstands zwischen Sender und Empfänger.
  • Man unterscheidet häufig, ob sich der Sender oder der Empfänger bewegt. Der andere ist zur Vereinfachung in Ruhe.
  • Verkleinert sich der Abstand Sender-Empfänger so steigt die wahrgenommene Frequenz.
  • Vergrößert sich der Abstand so sinkt die wahrgenommene Frequenz,

Zum Artikel Zu den Aufgaben

Überblick über die Strahlungsarten

Grundwissen

  • Die drei Strahlungsarten unterscheiden sich in vielfältigen Eigenschaften
  • Aber jede der Strahlungsarten kann für den Menschen gefährlich sein

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die drei Strahlungsarten unterscheiden sich in vielfältigen Eigenschaften
  • Aber jede der Strahlungsarten kann für den Menschen gefährlich sein

Zum Artikel Zu den Aufgaben

Energiebilanz beim Beta-Minus-Zerfall

Grundwissen

  • Beim Beta-Minus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Neutron in ein Proton um. Gleichzeitig wird ein \(\beta^-\)-Teilchen (Elektron) und ein Anti-Elektron-Neutrino \(\bar \nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) größer als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z+1}^A{\rm{Y}} +\;_{-1}^0{\rm{e^-}}+\;_0^0{\bar \nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Beta-Minus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Neutron in ein Proton um. Gleichzeitig wird ein \(\beta^-\)-Teilchen (Elektron) und ein Anti-Elektron-Neutrino \(\bar \nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) größer als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z+1}^A{\rm{Y}} +\;_{-1}^0{\rm{e^-}}+\;_0^0{\bar \nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Schallwellen

Grundwissen

In idealen Flüssigkeiten und Gasen breitet sich Schall nur in Form von Längswellen (Longitudinalwellen) aus. Störungen werden über die Stöße der Teilchen weitergegeben.

In Festkörpern kann sich Schall in Form von Längswellen (Longitudinalwellen) und Querwellen (Transversalwellen) ausbreiten. Störungen werden über die Kopplungskräfte der Teilchen weitergegeben.

Zum Artikel
Grundwissen

In idealen Flüssigkeiten und Gasen breitet sich Schall nur in Form von Längswellen (Longitudinalwellen) aus. Störungen werden über die Stöße der Teilchen weitergegeben.

In Festkörpern kann sich Schall in Form von Längswellen (Longitudinalwellen) und Querwellen (Transversalwellen) ausbreiten. Störungen werden über die Kopplungskräfte der Teilchen weitergegeben.

Zum Artikel Zu den Aufgaben

Kernfusion

Grundwissen

  • Zwei leichte Atomkerne können zu einem größeren Kern fusioniert werden, insbesondere Deuterium und Tritium zu Helium.
  • Bei der Fusionsreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Fusion sind kleiner als die Gesamtmasse vor der Fusion.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernfusion frei wird.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zwei leichte Atomkerne können zu einem größeren Kern fusioniert werden, insbesondere Deuterium und Tritium zu Helium.
  • Bei der Fusionsreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Fusion sind kleiner als die Gesamtmasse vor der Fusion.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernfusion frei wird.

Zum Artikel Zu den Aufgaben

Alphazerfall und Alphastrahlung

Grundwissen

  • Bei Alphastrahlung handelt es sich um eine Teilchenstrahlung aus Heliumatomkernen (zwei Protonen und zwei Neutronen).
  • Alphastrahlung hat eine geringe Reichweite und kann leicht abgeschirmt werden.
  • Alphastrahlung besitzt ein hohes Ionisierungsvermögen (ionisiert viele Teilchen in kleinem Raum).

Zum Artikel
Grundwissen

  • Bei Alphastrahlung handelt es sich um eine Teilchenstrahlung aus Heliumatomkernen (zwei Protonen und zwei Neutronen).
  • Alphastrahlung hat eine geringe Reichweite und kann leicht abgeschirmt werden.
  • Alphastrahlung besitzt ein hohes Ionisierungsvermögen (ionisiert viele Teilchen in kleinem Raum).

Zum Artikel Zu den Aufgaben

Erklärungsprobleme des Photoeffekts

Grundwissen

Einige Aspekte des Photoeffektes können mit dem klassischen Wellenmodell nur schwerlich erklärt werden:

  • Die Existenz einer oberen Grenzwellenlänge oberhalb derer auch bei gesteigerter Intensität keine Elektronen mehr ausgelöst werden.
  • Trägheitsloses Einsetzen des Photostroms

Das Photonenmodell liefert für dieses Aspekte plausible Erklärungen.

Zum Artikel
Grundwissen

Einige Aspekte des Photoeffektes können mit dem klassischen Wellenmodell nur schwerlich erklärt werden:

  • Die Existenz einer oberen Grenzwellenlänge oberhalb derer auch bei gesteigerter Intensität keine Elektronen mehr ausgelöst werden.
  • Trägheitsloses Einsetzen des Photostroms

Das Photonenmodell liefert für dieses Aspekte plausible Erklärungen.

Zum Artikel Zu den Aufgaben

Wechselwirkungen

Grundwissen

  • Die starke Wechselwirkung wird von der sog. Farbladung bestimmt und Botenteilchen der starken Wechselwirkung sind die Gluonen.
  • Der schwachen Wechselwirkung unterliegen nur Teilchen mit schwacher Ladung. Botenteilchen sind die W- und Z-Bosonen.
  • Der elektromagnetischen Wechselwirkung unterliegen nur geladene Teilchen. Botenteilchen ist das Photon.

Zum Artikel
Grundwissen

  • Die starke Wechselwirkung wird von der sog. Farbladung bestimmt und Botenteilchen der starken Wechselwirkung sind die Gluonen.
  • Der schwachen Wechselwirkung unterliegen nur Teilchen mit schwacher Ladung. Botenteilchen sind die W- und Z-Bosonen.
  • Der elektromagnetischen Wechselwirkung unterliegen nur geladene Teilchen. Botenteilchen ist das Photon.

Zum Artikel Zu den Aufgaben

Elektromagnetische Wechselwirkung

Grundwissen

  • Nur elektrische geladene Teilchen unterliegen der elektromagnetischen Wechselwirkung, die durch Absorption und Emission von Photonen vermittelt wird.
  • Die elektrische Ladung eines Elementarteilchens kann als Wert nur ganzzahlige Vielfache von \(\frac{1}{3}\) annehmen.
  • Die elektromagnetische Wechselwirkung hat eine unendlich große Reichweite, aber ihre Kraft nimmt quadratisch mit dem Abstand der elektrisch geladenen Teilchen ab.

Zum Artikel
Grundwissen

  • Nur elektrische geladene Teilchen unterliegen der elektromagnetischen Wechselwirkung, die durch Absorption und Emission von Photonen vermittelt wird.
  • Die elektrische Ladung eines Elementarteilchens kann als Wert nur ganzzahlige Vielfache von \(\frac{1}{3}\) annehmen.
  • Die elektromagnetische Wechselwirkung hat eine unendlich große Reichweite, aber ihre Kraft nimmt quadratisch mit dem Abstand der elektrisch geladenen Teilchen ab.

Zum Artikel Zu den Aufgaben

Gangunterschied bei zwei Quellen

Grundwissen

  • Allgemein gilt für den Gangunterschied \(\Delta s = \left| {\overline {{S_2}E} - \overline {{S_1}E} } \right|\)
  • Im Falle eines rechtwinkligen Aufbaus hilft der Satz des Pythagoras
  • Bei weit entferntem Empfänger kann die Kleinwinkelnäherung genutzt werden und \(\Delta s = d \cdot \frac{a}{e}\)

Zum Artikel
Grundwissen

  • Allgemein gilt für den Gangunterschied \(\Delta s = \left| {\overline {{S_2}E} - \overline {{S_1}E} } \right|\)
  • Im Falle eines rechtwinkligen Aufbaus hilft der Satz des Pythagoras
  • Bei weit entferntem Empfänger kann die Kleinwinkelnäherung genutzt werden und \(\Delta s = d \cdot \frac{a}{e}\)

Zum Artikel Zu den Aufgaben

Beugung und Interferenz von Elektronen an Kristallgittern

Grundwissen

  • De BROGLIEs theoretische Überlegungen zur Wellennatur von Materie konnten 1927 von den amerikanischen Physikern Clinton Joseph DAVISSON und Lester Halbert GERMER sowie unabhängig davon vom englischen Physiker George Paget THOMSON durch die Elektronenbeugung an Kristallen bestätigt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • De BROGLIEs theoretische Überlegungen zur Wellennatur von Materie konnten 1927 von den amerikanischen Physikern Clinton Joseph DAVISSON und Lester Halbert GERMER sowie unabhängig davon vom englischen Physiker George Paget THOMSON durch die Elektronenbeugung an Kristallen bestätigt werden.

Zum Artikel Zu den Aufgaben

Beugung und Interferenz von Elektronen außerhalb von Materie

Grundwissen

  • Die Wellennatur von Materie konnte zwischen 1955 und 1957 von MÖLLENSTEDT und seinen Schülern DÜKER und JÖNSSON auch beim Durchgang von Elektronen durch ein elektrisches Biprisma und sogar durch einen materiellen Doppelspalt bestätigt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Wellennatur von Materie konnte zwischen 1955 und 1957 von MÖLLENSTEDT und seinen Schülern DÜKER und JÖNSSON auch beim Durchgang von Elektronen durch ein elektrisches Biprisma und sogar durch einen materiellen Doppelspalt bestätigt werden.

Zum Artikel Zu den Aufgaben

Untersuchung der Photonenenergie mit Geradsichtprisma und Zink-Sulfid-Schirm

Versuche

  • Qualitativer Nachweis des Zusammenhangs zwischen der Farbe des Lichts und der Energie der zugehörigen Photonen

Zum Artikel
Versuche

  • Qualitativer Nachweis des Zusammenhangs zwischen der Farbe des Lichts und der Energie der zugehörigen Photonen

Zum Artikel Zu den Aufgaben

Untersuchung der Photonenenergie mit Leuchtdioden

Versuche

Eine qualitative Aussage über den Zusammenhang zwischen Photonenenergie und entsprechender Lichtfarbe gelingt experimentell fast noch einfacher als mit dem Prismenspektrum (Link am Ende dieses Artikels) mit Hilfe von Leuchtdioden.

Zum Artikel
Versuche

Eine qualitative Aussage über den Zusammenhang zwischen Photonenenergie und entsprechender Lichtfarbe gelingt experimentell fast noch einfacher als mit dem Prismenspektrum (Link am Ende dieses Artikels) mit Hilfe von Leuchtdioden.

Zum Artikel Zu den Aufgaben

Doppelspaltversuch von TAYLOR

Versuche

  • Nachweis von Beugung und Interferenz von Licht beim Durchgang durch einen Doppelspalt auch bei sehr kleinen Lichtintensitäten

Zum Artikel
Versuche

  • Nachweis von Beugung und Interferenz von Licht beim Durchgang durch einen Doppelspalt auch bei sehr kleinen Lichtintensitäten

Zum Artikel Zu den Aufgaben

COMPTON-Effekt (Simulation MintApps)

Versuche

  • Veranschaulichung des COMPTON-Effektes
  • Analyse mittels Impulsdiagramm

Zum Artikel
Versuche

  • Veranschaulichung des COMPTON-Effektes
  • Analyse mittels Impulsdiagramm

Zum Artikel Zu den Aufgaben

BOYLE-MARIOTTE (Selbstbau)

Versuche
Versuche

Brauchen wir die Kernfusion - Video

Versuche
Versuche

Verdampfen von Wasser - Fortführung

Versuche
Versuche

Video zur Quantenmechanik

Versuche
Versuche

Bau einer Panflöte

Versuche
Versuche

Zweiquelleninterferenz von Schall

Versuche

  • Konstruktive und destruktive Interferenz von Schallwellen erfahrbar machen
  • Gesetzmäßigkeiten der destruktiven Interferenz quantitativ bestätigen

Zum Artikel
Versuche

  • Konstruktive und destruktive Interferenz von Schallwellen erfahrbar machen
  • Gesetzmäßigkeiten der destruktiven Interferenz quantitativ bestätigen

Zum Artikel Zu den Aufgaben

Absorption von ß-Strahlung in Luft

Versuche

  • Bestätigung des Abstandsgesetzes für (harte) \(\beta\)-Strahlung

Zum Artikel
Versuche

  • Bestätigung des Abstandsgesetzes für (harte) \(\beta\)-Strahlung

Zum Artikel Zu den Aufgaben

Absorption von ß-Strahlung in Aluminium

Versuche
Versuche

Absorption von Gammastrahlung in Materie

Versuche
Versuche

Bestimmung der Halbwertszeit von \({}^{220}{\rm{Rn}}\)

Versuche

  • Bestimmung der Halbwertszeit von \({}^{220}{\rm{Rn}}\)

Zum Artikel
Versuche

  • Bestimmung der Halbwertszeit von \({}^{220}{\rm{Rn}}\)

Zum Artikel Zu den Aufgaben

Simulationen zum Doppelspalt

Versuche
Versuche