Direkt zum Inhalt
Suchergebnisse 61 - 90 von 155

Radioisotopengenerator (Abitur BY 2012 Ph12-2 A1)

Aufgabe ( Übungsaufgaben )

Seit August 2012 erkundet das Roboterfahrzeug „Curiosity“ die Marsoberfläche. Das Fahrzeug ist mit einem Radioisotopengenerator ausgestattet, der die…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Seit August 2012 erkundet das Roboterfahrzeug „Curiosity“ die Marsoberfläche. Das Fahrzeug ist mit einem Radioisotopengenerator ausgestattet, der die…

Zur Aufgabe

Strahlendes Mondgestein (Abitur BY 2009 GK A4-1)

Aufgabe ( Übungsaufgaben )

Bei den Apollo-Missionen wurden von Astronauten einige Kilogramm Mondgestein zur Erde gebracht. Viele dieser Steine enthalten eine sehr kleine Menge…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Bei den Apollo-Missionen wurden von Astronauten einige Kilogramm Mondgestein zur Erde gebracht. Viele dieser Steine enthalten eine sehr kleine Menge…

Zur Aufgabe

Brout-Englert-Higgs-Mechanismus und das Higgs-Teilchen

Aufgabe ( Übungsaufgaben )

Klicke nach dem Start des Videos auf das "Untertitel"-Icon und wähle als Untertitel "Deutsch". Schaue dir das folgende Video an und versuche im…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Klicke nach dem Start des Videos auf das "Untertitel"-Icon und wähle als Untertitel "Deutsch". Schaue dir das folgende Video an und versuche im…

Zur Aufgabe

Radioaktive Leuchtfarben (Abitur BY 2016 Ph12-2 A3)

Aufgabe ( Übungsaufgaben )

Zifferblätter von Armbanduhren wurden früher mit radioaktiver Farbe bemalt, damit sie im Dunkeln leuchten. In einer solchen Farbe werden…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Zifferblätter von Armbanduhren wurden früher mit radioaktiver Farbe bemalt, damit sie im Dunkeln leuchten. In einer solchen Farbe werden…

Zur Aufgabe

Paarerzeugung

Aufgabe ( Übungsaufgaben )

HTML5-Canvas nicht unterstützt! // Paarerzeugung Animation // 12.01.2017 //…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

HTML5-Canvas nicht unterstützt! // Paarerzeugung Animation // 12.01.2017 //…

Zur Aufgabe

Altersbestimmung von Zirkonen (Abitur BY 2017 Ph12-1 A3)

Aufgabe ( Übungsaufgaben )

Zirkone sind Minerale, deren Entstehungszeitpunkt mit der Uran-Blei-Methode bestimmt werden kann. Daraus lässt sich oftmals auch das Alter des…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Zirkone sind Minerale, deren Entstehungszeitpunkt mit der Uran-Blei-Methode bestimmt werden kann. Daraus lässt sich oftmals auch das Alter des…

Zur Aufgabe

Ein historisches Experiment zur Radioaktivität (Abitur BY 2017 Ph12-1 A2)

Aufgabe ( Übungsaufgaben )

Marie und Pierre CURIE haben im Jahr 1898 bei ihren Experimenten das Element Radium entdeckt. \({}_{88}^{226}{\rm{Ra}}\) kommt in der natürlichen…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Marie und Pierre CURIE haben im Jahr 1898 bei ihren Experimenten das Element Radium entdeckt. \({}_{88}^{226}{\rm{Ra}}\) kommt in der natürlichen…

Zur Aufgabe

Positronen-Emissions-Tomographie (Abitur BY 2017 Ph12-2 A2)

Aufgabe ( Übungsaufgaben )

Die Positronen-Emissions-Tomographie ist ein medizinisches Diagnoseverfahren. Hierbei wird z. B. das Isotop \({}_{}^{18}{\rm{F}}\) (Atommasse…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Die Positronen-Emissions-Tomographie ist ein medizinisches Diagnoseverfahren. Hierbei wird z. B. das Isotop \({}_{}^{18}{\rm{F}}\) (Atommasse…

Zur Aufgabe

Massenverhältnis Kern-Hülle

Aufgabe ( Übungsaufgaben )

Berechne, welchen Prozentsatz die Masse aller Hüllenelektronen eines Uran-Atoms von der Masse eines Nukleons (Kernbaustein) darstellt.

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Berechne, welchen Prozentsatz die Masse aller Hüllenelektronen eines Uran-Atoms von der Masse eines Nukleons (Kernbaustein) darstellt.

Zur Aufgabe

Veranschaulichung der Atomgröße

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Vergleich Atomkern und StecknadelStell dir vor, der Atomkern wäre so groß wie ein Stecknadelkopf. Schätze ab,…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Vergleich Atomkern und StecknadelStell dir vor, der Atomkern wäre so groß wie ein Stecknadelkopf. Schätze ab,…

Zur Aufgabe

Dichte von Kernmaterie

Aufgabe ( Übungsaufgaben )

Für den Kernradius gilt die Näherungsformel \(r = 1{,}4 \cdot {10^{ - 15}}\,{\rm{m}} \cdot \sqrt[3]{A}\) . Dabei bedeutet \(A\) die Massezahl des…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Für den Kernradius gilt die Näherungsformel \(r = 1{,}4 \cdot {10^{ - 15}}\,{\rm{m}} \cdot \sqrt[3]{A}\) . Dabei bedeutet \(A\) die Massezahl des…

Zur Aufgabe

Alkohol und Wasser im Thermometer

Aufgabe ( Übungsaufgaben )

Beschreibe die Beobachtungen des dargestellten Versuchs. Skizziere das Temperatur-Volumendiagramm, das sich daraus für Wasser im gezeigten Bereich…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Beschreibe die Beobachtungen des dargestellten Versuchs. Skizziere das Temperatur-Volumendiagramm, das sich daraus für Wasser im gezeigten Bereich…

Zur Aufgabe

Energieträger Wasserstoff

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Wasserstoff und Benzin - ein VergleichWasserstoff ist keine primäre Energiequelle wie Erdöl, Biomasse oder…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Wasserstoff und Benzin - ein VergleichWasserstoff ist keine primäre Energiequelle wie Erdöl, Biomasse oder…

Zur Aufgabe

Größenverhältnisse

Aufgabe ( Übungsaufgaben )

  CC BY-SA 3.0 / Michael Fowler (http://galileoandeinstein.physics.virginia.edu/) …

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

  CC BY-SA 3.0 / Michael Fowler (http://galileoandeinstein.physics.virginia.edu/) …

Zur Aufgabe

Starke Ladung (Farbladung) der Elementarteilchen

Aufgabe ( Erarbeitungsaufgaben )

Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was man damit…

Zur Aufgabe
Aufgabe ( Erarbeitungsaufgaben )

Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was man damit…

Zur Aufgabe

Schwache Ladung der Elementarteilchen

Aufgabe ( Erarbeitungsaufgaben )

Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was man damit…

Zur Aufgabe
Aufgabe ( Erarbeitungsaufgaben )

Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was man damit…

Zur Aufgabe

Elektrische Ladung der Elementarteilchen

Aufgabe ( Erarbeitungsaufgaben )

  Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was…

Zur Aufgabe
Aufgabe ( Erarbeitungsaufgaben )

  Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was…

Zur Aufgabe

Systematik der Elementarteilchen

Aufgabe ( Erarbeitungsaufgaben )

  Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was…

Zur Aufgabe
Aufgabe ( Erarbeitungsaufgaben )

  Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was…

Zur Aufgabe

Symmetrie von Teilchen und Anti-Teilchen

Aufgabe ( Erarbeitungsaufgaben )

  Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was…

Zur Aufgabe
Aufgabe ( Erarbeitungsaufgaben )

  Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was…

Zur Aufgabe

Rückbau von Kernreaktoren (Abitur BY 2018 Ph12-1 A2)

Aufgabe ( Übungsaufgaben )

Der Rückbau eines Reaktordruckbehälters ist mit einer großen Strahlenbelastung für die Arbeiter verbunden, weil das Material während des Betriebs…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Der Rückbau eines Reaktordruckbehälters ist mit einer großen Strahlenbelastung für die Arbeiter verbunden, weil das Material während des Betriebs…

Zur Aufgabe

HERTZSPRUNG-RUSSELL-Diagramm

Grundwissen

  • Das Hertzsprung-Russell-Diagramm zeigt grob die Verteilung der Sterne über ihre Entwicklungsstadien.
  • Im Diagramm zeigen sich verschiedene charakteristische Bereiche.
  • An der Position eines Sterns im HRD kann man meist seinen Entwicklungszustand ablesen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Hertzsprung-Russell-Diagramm zeigt grob die Verteilung der Sterne über ihre Entwicklungsstadien.
  • Im Diagramm zeigen sich verschiedene charakteristische Bereiche.
  • An der Position eines Sterns im HRD kann man meist seinen Entwicklungszustand ablesen.

Zum Artikel Zu den Aufgaben

Monat

Grundwissen

  • Ein synodischer Monat ist die Zeit von einer Mondphase bis zu ihrer Wiederkehr.
  • Ein siderischer Monat ist die Zeit für einen vollen Umlauf des Mondes um die Erde gegenüber dem Sternenhintergrund.

Zum Artikel
Grundwissen

  • Ein synodischer Monat ist die Zeit von einer Mondphase bis zu ihrer Wiederkehr.
  • Ein siderischer Monat ist die Zeit für einen vollen Umlauf des Mondes um die Erde gegenüber dem Sternenhintergrund.

Zum Artikel Zu den Aufgaben

Kernkraft

Grundwissen

  • Die Kernkraft basiert auf der starken Wechselwirkung
  • Die Kernkraft sorgt bei kleinen Nukleonenabständen von etwa \(0{,}5\,\rm{fm}\) bis  \(2{,}5\,\rm{fm}\) für eine Anziehung der Nukleonen und hält somit den Atomkern zusammen.
  • Die Kernkraft ist wesentlich stärker als die Gravitationswechselwirkung oder die elektromagnetische Wechselwirkung.
  • Für den Radius eines Atomkerns gilt näherungsweise \({{r_k} = 1{,}4 \cdot {10^{ - 15}}\,\rm{m} \cdot \sqrt[3]{A}}\), wo \(A\) die Nukleonenanzahl ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Kernkraft basiert auf der starken Wechselwirkung
  • Die Kernkraft sorgt bei kleinen Nukleonenabständen von etwa \(0{,}5\,\rm{fm}\) bis  \(2{,}5\,\rm{fm}\) für eine Anziehung der Nukleonen und hält somit den Atomkern zusammen.
  • Die Kernkraft ist wesentlich stärker als die Gravitationswechselwirkung oder die elektromagnetische Wechselwirkung.
  • Für den Radius eines Atomkerns gilt näherungsweise \({{r_k} = 1{,}4 \cdot {10^{ - 15}}\,\rm{m} \cdot \sqrt[3]{A}}\), wo \(A\) die Nukleonenanzahl ist.

Zum Artikel Zu den Aufgaben

Änderung der inneren Energie

Grundwissen

  • Eine Änderung der inneren Energie \(\Delta E_{\rm i}\) kann durch Verrichtung von Arbeit an einem Körper oder durch Übertragung von Wärme auf einen Körper erfolgen.
  • Die Änderung der innere Energie \(\Delta E_{\rm i}\) ist proportional zur Temperaturänderung \(\Delta \vartheta\) und zur Masse \(m\) .
  • Mathematisch wird der Zusammenhang beschrieben durch \(\Delta E_{\rm i}= c \cdot m\cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Eine Änderung der inneren Energie \(\Delta E_{\rm i}\) kann durch Verrichtung von Arbeit an einem Körper oder durch Übertragung von Wärme auf einen Körper erfolgen.
  • Die Änderung der innere Energie \(\Delta E_{\rm i}\) ist proportional zur Temperaturänderung \(\Delta \vartheta\) und zur Masse \(m\) .
  • Mathematisch wird der Zusammenhang beschrieben durch \(\Delta E_{\rm i}= c \cdot m\cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben

Lauf der Gestirne

Grundwissen

  • Die Deklination \(\varphi\) gibt die Höhe über der Äquatorebene an.
  • Die obere Kulmination beschreibt die größte Höhe eines Sterns, die untere Kulmination die geringste Höhe.
  • Sterne, die sich am Beobachtungsort immer über der Horizontebene befinden, nennt man Zirkumpolarsterne.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Deklination \(\varphi\) gibt die Höhe über der Äquatorebene an.
  • Die obere Kulmination beschreibt die größte Höhe eines Sterns, die untere Kulmination die geringste Höhe.
  • Sterne, die sich am Beobachtungsort immer über der Horizontebene befinden, nennt man Zirkumpolarsterne.

Zum Artikel Zu den Aufgaben

Energiebilanz beim Beta-Plus-Zerfall

Grundwissen

  • Beim Beta-Plus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Proton in ein Neutron um. Gleichzeitig wird ein \(\beta^+\)-Teilchen (Positron) und ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z-1}^A{\rm{Y}} +\;_{1}^0{\rm{e^+}}+\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-2 \cdot m_{\rm{e}}\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Beta-Plus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Proton in ein Neutron um. Gleichzeitig wird ein \(\beta^+\)-Teilchen (Positron) und ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z-1}^A{\rm{Y}} +\;_{1}^0{\rm{e^+}}+\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-2 \cdot m_{\rm{e}}\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Energiebilanz beim EC-Prozess oder K-Einfang

Grundwissen

  • Beim EC-Prozess oder K-Einfang wandelt sich im Mutterkern \(\rm{X}\) ein Proton zusammen mit einem Elektron (meist aus der K-Schale) in ein Neutron um. Gleichzeitig wird ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}} +\;_{-1}^0{\rm{e^-}} \to\;_{Z-1}^A{\rm{Y}} +\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim EC-Prozess oder K-Einfang wandelt sich im Mutterkern \(\rm{X}\) ein Proton zusammen mit einem Elektron (meist aus der K-Schale) in ein Neutron um. Gleichzeitig wird ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}} +\;_{-1}^0{\rm{e^-}} \to\;_{Z-1}^A{\rm{Y}} +\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Symmetrien und Erhaltungssätze

Grundwissen

  • Bei jeder Umwandlung von Teilchen oder jedem Wechselwirkungsprozess sind die elektrische, die starke Ladung und meistens auch die schwache Ladung erhalten.
  • Es gibt bei der schwachen Ladung nur wenige Ausnahmen, die alle mit dem Higgs-Teilchen oder Higgs-Feld zu tun haben.
  • Den Zusammenhang zwischen Erhaltungsgrößen und Symmetrien beschreibt das NOETHER-Theorem.

Zum Artikel
Grundwissen

  • Bei jeder Umwandlung von Teilchen oder jedem Wechselwirkungsprozess sind die elektrische, die starke Ladung und meistens auch die schwache Ladung erhalten.
  • Es gibt bei der schwachen Ladung nur wenige Ausnahmen, die alle mit dem Higgs-Teilchen oder Higgs-Feld zu tun haben.
  • Den Zusammenhang zwischen Erhaltungsgrößen und Symmetrien beschreibt das NOETHER-Theorem.

Zum Artikel Zu den Aufgaben

Das Standardmodell der Teilchenphysik

Grundwissen

  • Das Standardmodell der Teilchenphysik ist die aktuelle Theorie zur Beschreibung von subatomaren Vorgängen.
  • Das Standardmodell basiert auf Symmetrien, sog. lokalen Eichsymmetrien, die die Flexibilität der Natur gut beschreiben.

Zum Artikel
Grundwissen

  • Das Standardmodell der Teilchenphysik ist die aktuelle Theorie zur Beschreibung von subatomaren Vorgängen.
  • Das Standardmodell basiert auf Symmetrien, sog. lokalen Eichsymmetrien, die die Flexibilität der Natur gut beschreiben.

Zum Artikel Zu den Aufgaben

Die vier fundamentalen Wechselwirkungen

Grundwissen

  • Die vier fundamentalen Wechselwirkungen sind die starke Wechselwirkung, die schwache Wechselwirkung, die elektromagnetische Wechselwirkung und die Gravitation.
  • Für das Standardmodell spielt die Gravitation zunächst keine zentrale Rolle.
  • Zu jeder Wechselwirkung gehört eine eigene Ladung, deren Wert angibt, wie sensitiv ein Teilchen für diese Wechselwirkung ist.

Zum Artikel
Grundwissen

  • Die vier fundamentalen Wechselwirkungen sind die starke Wechselwirkung, die schwache Wechselwirkung, die elektromagnetische Wechselwirkung und die Gravitation.
  • Für das Standardmodell spielt die Gravitation zunächst keine zentrale Rolle.
  • Zu jeder Wechselwirkung gehört eine eigene Ladung, deren Wert angibt, wie sensitiv ein Teilchen für diese Wechselwirkung ist.

Zum Artikel Zu den Aufgaben