Direkt zum Inhalt
Suchergebnisse 121 - 150 von 157

Energieabgabe von Atomen durch Emission von Photonen

Grundwissen

  • Angeregte Atome geben Energie durch die Emission von Photonen ab.
  • Diese Photon werden erst bei der Emission erzeugt, d.h. sie waren vorher nicht im Atom vorhanden.
  • Die Energie der emittierten Photonen ist immer gleich der Differenz der Energien zweier Energieniveaus des Atoms.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Angeregte Atome geben Energie durch die Emission von Photonen ab.
  • Diese Photon werden erst bei der Emission erzeugt, d.h. sie waren vorher nicht im Atom vorhanden.
  • Die Energie der emittierten Photonen ist immer gleich der Differenz der Energien zweier Energieniveaus des Atoms.

Zum Artikel Zu den Aufgaben

Energiezustände von Wasserstoff und verwandten Atomen

Grundwissen

  • Die Energiezustände des Wasserstoffatoms sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{1}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Damit können auch die Wellenlängen \(\lambda\) der bei Wasserstoffübergängen möglichen Photonen berechnet werden.
  • Die Energiezustände von Einelektronensystemen von Atomen mit der Kernladungszahl \(Z\) sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{Z^2}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Die Energiezustände von RYDBERG-Zustände aller Atomarten entsprechen den einfachen Verhältnissen beim Wasserstoffatom.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Energiezustände des Wasserstoffatoms sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{1}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Damit können auch die Wellenlängen \(\lambda\) der bei Wasserstoffübergängen möglichen Photonen berechnet werden.
  • Die Energiezustände von Einelektronensystemen von Atomen mit der Kernladungszahl \(Z\) sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{Z^2}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Die Energiezustände von RYDBERG-Zustände aller Atomarten entsprechen den einfachen Verhältnissen beim Wasserstoffatom.

Zum Artikel Zu den Aufgaben

Erzeugung von RÖNTGEN-Strahlung

Grundwissen

  • In RÖNTGEN-Röhren werden Elektronen stark beschleunigt und treffen dann auf eine Anode aus Metall.
  • Die Beschleunigungsspannungen betragen meist zwischen \(1\,\rm{kV}\) und \(100\,\rm{kV}\).
  • Beim Abbremsen der Elektronen im Anodenmaterial entsteht RÖNTGEN-Strahlung (Bremsstrahlung und Charakteristische Strahlung) und Wärme.
  • Die Wellenlänge von RÖNTGEN-Strahlung liegt etwa zwischen \(1\,\rm{nm}\) und \(1\,\rm{pm}\).

Zum Artikel
Grundwissen

  • In RÖNTGEN-Röhren werden Elektronen stark beschleunigt und treffen dann auf eine Anode aus Metall.
  • Die Beschleunigungsspannungen betragen meist zwischen \(1\,\rm{kV}\) und \(100\,\rm{kV}\).
  • Beim Abbremsen der Elektronen im Anodenmaterial entsteht RÖNTGEN-Strahlung (Bremsstrahlung und Charakteristische Strahlung) und Wärme.
  • Die Wellenlänge von RÖNTGEN-Strahlung liegt etwa zwischen \(1\,\rm{nm}\) und \(1\,\rm{pm}\).

Zum Artikel Zu den Aufgaben

Stromkreiselemente

Grundwissen

  • Damit eine Lampe leuchtet, muss immer ein geschlossener Stromkreis vorliegen.
  • Kabel dienen als Verlängerungen und ermöglichen einen einfachen Aufbau.
  • Mit Schaltern kann der Stromkreis geöffnet und geschlossen werden.
  • Sicherungen schützen die Bauteile im Stromkreis vor zu großen Strömen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Damit eine Lampe leuchtet, muss immer ein geschlossener Stromkreis vorliegen.
  • Kabel dienen als Verlängerungen und ermöglichen einen einfachen Aufbau.
  • Mit Schaltern kann der Stromkreis geöffnet und geschlossen werden.
  • Sicherungen schützen die Bauteile im Stromkreis vor zu großen Strömen.

Zum Artikel Zu den Aufgaben

Helium-Neon-Laser

Grundwissen

  • Neon-Atome sind das laseraktive Medium
  • Am Prozess sind vier Energieniveaus beteiligt - es ist ein "Vier-Niveau-System"
  • Helium-Neon-Laser emittiert rotes Licht der Wellenlänge \(\lambda=633\,\rm{nm}\)

Zum Artikel
Grundwissen

  • Neon-Atome sind das laseraktive Medium
  • Am Prozess sind vier Energieniveaus beteiligt - es ist ein "Vier-Niveau-System"
  • Helium-Neon-Laser emittiert rotes Licht der Wellenlänge \(\lambda=633\,\rm{nm}\)

Zum Artikel Zu den Aufgaben

Exotische Atome

Grundwissen

  • Bei exotischen Atomen ist mindestens eines der beteiligten Teilchen kein gewöhnliches Atom-Bestandteil.
  • Beispiele für exotische Atome sind Myonische Atome oder Antimaterie wie Antiwasserstoff.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei exotischen Atomen ist mindestens eines der beteiligten Teilchen kein gewöhnliches Atom-Bestandteil.
  • Beispiele für exotische Atome sind Myonische Atome oder Antimaterie wie Antiwasserstoff.

Zum Artikel Zu den Aufgaben

RYDBERG-Atome

Grundwissen

  • RYDBERG-Atome sind Atome in sehr hohen Anregungszuständen.
  • Die Theorie von Bohr kann sehr gut auf RYDBERG-Atome angewendet werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • RYDBERG-Atome sind Atome in sehr hohen Anregungszuständen.
  • Die Theorie von Bohr kann sehr gut auf RYDBERG-Atome angewendet werden.

Zum Artikel Zu den Aufgaben

Energiezustände im BOHRschen Atommodell

Grundwissen

  • Durch die Quantenbedingung von BOHR kann die Energie eines Atoms nur bestimmte Werte annehmen.
  • Die Energie, um Wasserstoff aus dem Grundzustand heraus zu ionisieren beträgt \(13{,}6\,\rm{eV}\) (Ionisierungsenergie).
  • Die Gesamtenergie eines Elektrons im Wasserstoffatom gilt \({E_{{\rm{ges}}{\rm{,n}}}} = - R_{\infty} \cdot h \cdot c \cdot \frac{1}{{{n^2}}}\), wobei \(R_{\infty}\) die Rydberg-Konstante ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Durch die Quantenbedingung von BOHR kann die Energie eines Atoms nur bestimmte Werte annehmen.
  • Die Energie, um Wasserstoff aus dem Grundzustand heraus zu ionisieren beträgt \(13{,}6\,\rm{eV}\) (Ionisierungsenergie).
  • Die Gesamtenergie eines Elektrons im Wasserstoffatom gilt \({E_{{\rm{ges}}{\rm{,n}}}} = - R_{\infty} \cdot h \cdot c \cdot \frac{1}{{{n^2}}}\), wobei \(R_{\infty}\) die Rydberg-Konstante ist.

Zum Artikel Zu den Aufgaben

Parallelschaltung von Widerständen

Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier parallel geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(\frac{1}{R_{12}}=\frac{1}{R_1} +\frac{1}{R_2}\)
  •  Der Gesamtwiderstands einer Parallelschaltung ist stets kleiner als der kleinste Einzelwiderstand eines Astes.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier parallel geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(\frac{1}{R_{12}}=\frac{1}{R_1} +\frac{1}{R_2}\)
  •  Der Gesamtwiderstands einer Parallelschaltung ist stets kleiner als der kleinste Einzelwiderstand eines Astes.

Zum Artikel Zu den Aufgaben

OHMsches Gesetz

Grundwissen

Das Experiment zeigt, dass bei vielen elektrischen Leitern die Spannung \(U\), die über dem Leiter abfällt, proportional ist zur Stärke \(I\) des Stroms, der durch den Leiter fließt.

Diese Proportionalität bezeichnet man als das OHMsche Gesetz und beschreibt sie durch die Gleichung \(U = R \cdot I\).

Den Proportionalitätsfaktor \(R\) bezeichnet man als elektrischen Widerstand. Seine Maßeinheit ist \(1\,\Omega\) (Ohm).

Zum Artikel Zu den Aufgaben
Grundwissen

Das Experiment zeigt, dass bei vielen elektrischen Leitern die Spannung \(U\), die über dem Leiter abfällt, proportional ist zur Stärke \(I\) des Stroms, der durch den Leiter fließt.

Diese Proportionalität bezeichnet man als das OHMsche Gesetz und beschreibt sie durch die Gleichung \(U = R \cdot I\).

Den Proportionalitätsfaktor \(R\) bezeichnet man als elektrischen Widerstand. Seine Maßeinheit ist \(1\,\Omega\) (Ohm).

Zum Artikel Zu den Aufgaben

Wesenszug 1: Statistische Vorhersagbarkeit

Grundwissen

  • Die Bahn eines einzelnen Photons beim Doppelspaltexperiment kann grundsätzlich nicht genau vorhergesagt werden.
  • Quantenphysikalische Ereignisse sind nicht deterministisch, unterliegen aber statistischen Gesetzmäßigkeiten.
  • Ein einfaches Beispiel hierzu ist das Verhalten von Photonen an einem Strahlteiler.

Zum Artikel
Grundwissen

  • Die Bahn eines einzelnen Photons beim Doppelspaltexperiment kann grundsätzlich nicht genau vorhergesagt werden.
  • Quantenphysikalische Ereignisse sind nicht deterministisch, unterliegen aber statistischen Gesetzmäßigkeiten.
  • Ein einfaches Beispiel hierzu ist das Verhalten von Photonen an einem Strahlteiler.

Zum Artikel Zu den Aufgaben

Wesenszug 2: Fähigkeit zur Interferenz

Grundwissen

  • Quantenobjekte können mit sich selbst interferieren
  • Für die Ausbildung eines Interferenzmusters in einem Experiment müssen mehrere klassisch denkbare Wege existieren.
  • In der Quantenphysik wird keiner der klassischen Wege tatsächlich realisiert.
  • Quantenobjekten kann meist kein exakter Ort zugeschrieben werden, sondern statistische Aufenthaltswahrscheinlichkeiten.

Zum Artikel
Grundwissen

  • Quantenobjekte können mit sich selbst interferieren
  • Für die Ausbildung eines Interferenzmusters in einem Experiment müssen mehrere klassisch denkbare Wege existieren.
  • In der Quantenphysik wird keiner der klassischen Wege tatsächlich realisiert.
  • Quantenobjekten kann meist kein exakter Ort zugeschrieben werden, sondern statistische Aufenthaltswahrscheinlichkeiten.

Zum Artikel Zu den Aufgaben

Wesenszug 3: Eindeutige Messergebnisse

Grundwissen

  • Quantenmechanische Messungen haben aktiven Charakter: Messungen zwingen ein System einen der möglichen Messwerte anzunehmen.
  • Messergebnisse sind stets eindeutig, auch wenn das Quantenobjekt vor der Messung in einem Zustand war, der unbestimmt bezüglich der gemessenen Größe ist.
  • Man unterscheidet in der Quantenmechanik, ob ein Objekt eine Eigenschaft besitzt oder man diese Eigenschaft misst.

Zum Artikel
Grundwissen

  • Quantenmechanische Messungen haben aktiven Charakter: Messungen zwingen ein System einen der möglichen Messwerte anzunehmen.
  • Messergebnisse sind stets eindeutig, auch wenn das Quantenobjekt vor der Messung in einem Zustand war, der unbestimmt bezüglich der gemessenen Größe ist.
  • Man unterscheidet in der Quantenmechanik, ob ein Objekt eine Eigenschaft besitzt oder man diese Eigenschaft misst.

Zum Artikel Zu den Aufgaben

Wesenszug 4: Komplementarität

Grundwissen

  • Bei einer Ortsmessung auf Höhe der Spalte bildet sich beim Doppelspaltexperiment kein Interferenzmuster auf dem Schirm aus.
  • Interferenzmuster und Unterscheidbarkeit der klassisch denkbaren Möglichkeiten schließen sich aus (Komplementarität).

Zum Artikel
Grundwissen

  • Bei einer Ortsmessung auf Höhe der Spalte bildet sich beim Doppelspaltexperiment kein Interferenzmuster auf dem Schirm aus.
  • Interferenzmuster und Unterscheidbarkeit der klassisch denkbaren Möglichkeiten schließen sich aus (Komplementarität).

Zum Artikel Zu den Aufgaben

Quantenmechanische Systematisierung des Periodensystems

Grundwissen

  • Die Zustände der gebundenen Elektronen eines Atoms werden mit den Quantenzahlen beschrieben.
  • Es gibt vier unterschiedliche Quantenzahlen: Hauptquantenzahl \(n\), Nebenquantenzahl \(l\), magnetische Quantenzahl \(m\) und Spin-Quantenzahl \(s\).
  • Das PAULI-Prinzip besagt, dass in einem Atom niemals zwei Elektronen in allen vier Quantenzahlen übereinstimmen können.

Zum Artikel
Grundwissen

  • Die Zustände der gebundenen Elektronen eines Atoms werden mit den Quantenzahlen beschrieben.
  • Es gibt vier unterschiedliche Quantenzahlen: Hauptquantenzahl \(n\), Nebenquantenzahl \(l\), magnetische Quantenzahl \(m\) und Spin-Quantenzahl \(s\).
  • Das PAULI-Prinzip besagt, dass in einem Atom niemals zwei Elektronen in allen vier Quantenzahlen übereinstimmen können.

Zum Artikel Zu den Aufgaben

Atomdurchmesser aus dem Ölfleckversuch

Grundwissen

  • Beim Ölfleckversuch wird aus einer makroskopischen Beobachtung auf eine mikroskopische Eigenschaft geschlossen.
  • Der Durchmesser eines Atoms liegt in der Größenordnung von \(10^{-10}\,\rm{m}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Ölfleckversuch wird aus einer makroskopischen Beobachtung auf eine mikroskopische Eigenschaft geschlossen.
  • Der Durchmesser eines Atoms liegt in der Größenordnung von \(10^{-10}\,\rm{m}\).

Zum Artikel Zu den Aufgaben

Leiter und Nichtleiter

Grundwissen

  • Materialien können grob in zwei Kategorien eingeteilt werden: Leiter (z.B. Metalle) und Nichtleiter (z.B. Kunststoffe).
  • Ob ein Material Strom gut oder schlecht leitet kannst du mit einer Testschaltung prüfen.
  • Je mehr Salz im Wasser gelöst ist, desto besser leitet Wasser Strom.
  • Die meisten Gase leiten Strom nicht.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Materialien können grob in zwei Kategorien eingeteilt werden: Leiter (z.B. Metalle) und Nichtleiter (z.B. Kunststoffe).
  • Ob ein Material Strom gut oder schlecht leitet kannst du mit einer Testschaltung prüfen.
  • Je mehr Salz im Wasser gelöst ist, desto besser leitet Wasser Strom.
  • Die meisten Gase leiten Strom nicht.

Zum Artikel Zu den Aufgaben

Elektrische Ladung

Grundwissen

  • Die Einheit der elektrische Ladung, Symbol \(Q\), ist das Coulomb, Symbol \(\rm{C}\).
  • Ein Elektron besitzt die negative Elementarladung: \(q_{\rm{Elektron}}=-e = -1{,}6 \cdot 10^{-19}\,\rm{C}\).

Zum Artikel
Grundwissen

  • Die Einheit der elektrische Ladung, Symbol \(Q\), ist das Coulomb, Symbol \(\rm{C}\).
  • Ein Elektron besitzt die negative Elementarladung: \(q_{\rm{Elektron}}=-e = -1{,}6 \cdot 10^{-19}\,\rm{C}\).

Zum Artikel Zu den Aufgaben

Elektrische Kraft (2 Spezialfälle)

Grundwissen

  • Die elektrische Kraft \(\vec F_{\rm{el}}\) auf eine Punktladung \(q\) im Zwischenraum zweier entgegengesetzt geladener paralleler Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist senkrecht zu den Plattenoberflächen gerichtet. Der Betrag \(F_{\rm{el}}\) dieser elektrischen Kraft berechnet sich durch \(F_{\rm{el}} = \frac{1}{\varepsilon _0} \cdot \frac{\left| Q \right| \cdot \left|q \right|}{A}\).
  • Die elektrische Kraft \(\vec F_{\rm{C}}\) auf eine Punktladung \(q\) im Abstand \(r\) von einer ortsfesten Punktladung \(Q\) (COULOMB-Kraft) liegt auf der Verbindungsgeraden der beiden Ladungen. Der Betrag \(F_{\rm{C}}\) dieser COULOMB-Kraft berechnet sich durch \(F_{\rm{C}} = \frac{1}{4 \cdot \pi  \cdot \varepsilon _0} \cdot \frac{\left|Q\right| \cdot \left|q\right|}{{{r^2}}}\).
  • Dabei ist jeweils \(\varepsilon_0 = 8{,}854 \cdot {10^{-12}}\,\frac{\rm{A}\,\rm{s}}{\rm{V}\,\rm{m}}\) die elektrische Feldkonstante. 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die elektrische Kraft \(\vec F_{\rm{el}}\) auf eine Punktladung \(q\) im Zwischenraum zweier entgegengesetzt geladener paralleler Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist senkrecht zu den Plattenoberflächen gerichtet. Der Betrag \(F_{\rm{el}}\) dieser elektrischen Kraft berechnet sich durch \(F_{\rm{el}} = \frac{1}{\varepsilon _0} \cdot \frac{\left| Q \right| \cdot \left|q \right|}{A}\).
  • Die elektrische Kraft \(\vec F_{\rm{C}}\) auf eine Punktladung \(q\) im Abstand \(r\) von einer ortsfesten Punktladung \(Q\) (COULOMB-Kraft) liegt auf der Verbindungsgeraden der beiden Ladungen. Der Betrag \(F_{\rm{C}}\) dieser COULOMB-Kraft berechnet sich durch \(F_{\rm{C}} = \frac{1}{4 \cdot \pi  \cdot \varepsilon _0} \cdot \frac{\left|Q\right| \cdot \left|q\right|}{{{r^2}}}\).
  • Dabei ist jeweils \(\varepsilon_0 = 8{,}854 \cdot {10^{-12}}\,\frac{\rm{A}\,\rm{s}}{\rm{V}\,\rm{m}}\) die elektrische Feldkonstante. 

Zum Artikel Zu den Aufgaben

Elektrisches Feld und Feldliniendarstellung

Grundwissen

  • Im Raum um eine Ladung herrscht ein elektrisches Feld. Dieses elektrische Feld überträgt die Kraftwirkung dieser Ladung auf andere Ladungen.
  • Die elektrische Feldstärke ist definiert als der Quotient aus der elektrischen Kraft \({\vec F_{\rm{el}}}\) auf eine Probeladung und der Probeladung \(q\): \(\vec E = \frac{{{{\vec F}_{\rm{el}}}}}{q}\).
  • Für die elektrische Feldstärke \(\vec E\) im Raum um eine punktförmige Ladung \(Q\) gilt: Der Feldstärkevektor ist für eine positive Ladung radial von der Ladung weg und für eine negative Ladung radial zur Ladung hin orientiert, der Betrag ist umgekehrt proportional zum Quadrat des Abstands \(r\) und hat den Wert \(E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{\left|Q\right|}{r^2}\).
  • Die elektrische Feldstärke \(\vec E\) im Zwischenraum zweier entgegengesetzt geladener Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist konstant (homogenes elektrisches Feld). Der Feldstärkevektor steht senkrecht zu den Plattenoberflächen, ist von der positiv zur negativ geladenen Platte orientiert und hat den Betrag \(E = \frac{1}{\varepsilon_0} \cdot \frac{\left|Q\right|}{A}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Raum um eine Ladung herrscht ein elektrisches Feld. Dieses elektrische Feld überträgt die Kraftwirkung dieser Ladung auf andere Ladungen.
  • Die elektrische Feldstärke ist definiert als der Quotient aus der elektrischen Kraft \({\vec F_{\rm{el}}}\) auf eine Probeladung und der Probeladung \(q\): \(\vec E = \frac{{{{\vec F}_{\rm{el}}}}}{q}\).
  • Für die elektrische Feldstärke \(\vec E\) im Raum um eine punktförmige Ladung \(Q\) gilt: Der Feldstärkevektor ist für eine positive Ladung radial von der Ladung weg und für eine negative Ladung radial zur Ladung hin orientiert, der Betrag ist umgekehrt proportional zum Quadrat des Abstands \(r\) und hat den Wert \(E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{\left|Q\right|}{r^2}\).
  • Die elektrische Feldstärke \(\vec E\) im Zwischenraum zweier entgegengesetzt geladener Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist konstant (homogenes elektrisches Feld). Der Feldstärkevektor steht senkrecht zu den Plattenoberflächen, ist von der positiv zur negativ geladenen Platte orientiert und hat den Betrag \(E = \frac{1}{\varepsilon_0} \cdot \frac{\left|Q\right|}{A}\).

Zum Artikel Zu den Aufgaben

Homogenes elektrisches Feld

Grundwissen

  • Hat die elektrische Feldstärke \(\vec E\) in einem Raumgebiet immer die gleiche Richtung, die gleiche Orientierung und den gleichen Betrag, so sprechen wir von einem homogenen elektrischen Feld in diesem Raumgebiet.
  • Wichtigstes Beispiel für ein homogenes elektrisches Feld ist das Feld im Zwischenraum zweier entgegengesetzt geladener Platten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Hat die elektrische Feldstärke \(\vec E\) in einem Raumgebiet immer die gleiche Richtung, die gleiche Orientierung und den gleichen Betrag, so sprechen wir von einem homogenen elektrischen Feld in diesem Raumgebiet.
  • Wichtigstes Beispiel für ein homogenes elektrisches Feld ist das Feld im Zwischenraum zweier entgegengesetzt geladener Platten.

Zum Artikel Zu den Aufgaben

Potenzial

Grundwissen

  • Jedem Punkt \(\rm{P}\) eines elektrischen Feldes kann ein Potenzial \(\varphi_{\rm{P}_0} \left( \rm{P} \right)=\frac{{{E_{{\rm{pot}}{\rm{,}}{{\rm{P}}_0}}}\left( {\rm{P}} \right)}}{q}\) zugeordnet werden. Dieses Potenzial ist von der Größe und der Anordnung der felderzeugenden Ladung \(Q\) und der Wahl eines Bezugspunktes \(\rm{P}_0\) abhängig.
  • Im COULOMB-Feld wählt man den Bezugspunkt des Potenzials unendlich weit von der felderzeugenden Ladung entfernt. Dann hat das Potenzial im Abstand \(r\) von der felderzeugenden Ladung den Wert \( {\varphi \left( r \right)} = \frac{1}{{4 \cdot \pi \cdot {\varepsilon _0}}} \cdot Q \cdot \frac{1}{r}\).
  • Im homogenen elektrischen Feld (z.B. im Zwischenraum zweier entgegengesetzt geladener Platten) wählt man als Bezugspunkt des Potenzials die Oberfläche der negativ geladenen Platte. Dann hat das Potenzial im Abstand \(x\) von der negativ geladenen Platte den Wert \(\varphi \left( x \right) = E \cdot x\) bzw. \(\varphi \left( x \right) = \frac{1}{{{\varepsilon_0}}} \cdot \frac{{\left| Q \right|}}{A} \cdot x\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Jedem Punkt \(\rm{P}\) eines elektrischen Feldes kann ein Potenzial \(\varphi_{\rm{P}_0} \left( \rm{P} \right)=\frac{{{E_{{\rm{pot}}{\rm{,}}{{\rm{P}}_0}}}\left( {\rm{P}} \right)}}{q}\) zugeordnet werden. Dieses Potenzial ist von der Größe und der Anordnung der felderzeugenden Ladung \(Q\) und der Wahl eines Bezugspunktes \(\rm{P}_0\) abhängig.
  • Im COULOMB-Feld wählt man den Bezugspunkt des Potenzials unendlich weit von der felderzeugenden Ladung entfernt. Dann hat das Potenzial im Abstand \(r\) von der felderzeugenden Ladung den Wert \( {\varphi \left( r \right)} = \frac{1}{{4 \cdot \pi \cdot {\varepsilon _0}}} \cdot Q \cdot \frac{1}{r}\).
  • Im homogenen elektrischen Feld (z.B. im Zwischenraum zweier entgegengesetzt geladener Platten) wählt man als Bezugspunkt des Potenzials die Oberfläche der negativ geladenen Platte. Dann hat das Potenzial im Abstand \(x\) von der negativ geladenen Platte den Wert \(\varphi \left( x \right) = E \cdot x\) bzw. \(\varphi \left( x \right) = \frac{1}{{{\varepsilon_0}}} \cdot \frac{{\left| Q \right|}}{A} \cdot x\).

Zum Artikel Zu den Aufgaben

Kapazität des Plattenkondensators

Grundwissen

  • Die Kapazität eines Plattenkondensators (Flächeninhalt der (gleichgroßen) Platten \(A\), Plattenabstand \(d\), Dielektrikum mit relativer Dielektrizitätskonstante \({\varepsilon _r}\)) berechnet sich durch \(C = {\varepsilon _0} \cdot {\varepsilon _r} \cdot \frac{A}{d}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Kapazität eines Plattenkondensators (Flächeninhalt der (gleichgroßen) Platten \(A\), Plattenabstand \(d\), Dielektrikum mit relativer Dielektrizitätskonstante \({\varepsilon _r}\)) berechnet sich durch \(C = {\varepsilon _0} \cdot {\varepsilon _r} \cdot \frac{A}{d}\).

Zum Artikel Zu den Aufgaben

Kondensator und Kapazität

Grundwissen

  • Ein Kondensator ist eine Anordnung von zwei Leitern, zwischen denen sich ein isolierendes Material, ein sogenanntes Dielektrikum befindet.
  • Legt man über die beiden Leiter eine Spannung an, dann befinden sich nach einiger Zeit auf den Leitern entgegengesetzte, betraglich gleich große Ladungen.
  • Der Ladungsbetrag \(Q\), der sich auf dem Kondensator befindet, ist proportional zur Spannung \(U\), die über dem Kondensator anliegt: \(Q=C \cdot U\). Den Proportionalitätsfaktor \(C\) bezeichnet man als Kapazität des Kondensators. 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Kondensator ist eine Anordnung von zwei Leitern, zwischen denen sich ein isolierendes Material, ein sogenanntes Dielektrikum befindet.
  • Legt man über die beiden Leiter eine Spannung an, dann befinden sich nach einiger Zeit auf den Leitern entgegengesetzte, betraglich gleich große Ladungen.
  • Der Ladungsbetrag \(Q\), der sich auf dem Kondensator befindet, ist proportional zur Spannung \(U\), die über dem Kondensator anliegt: \(Q=C \cdot U\). Den Proportionalitätsfaktor \(C\) bezeichnet man als Kapazität des Kondensators. 

Zum Artikel Zu den Aufgaben

Auswerten von Entladekurven

Grundwissen

  • Aus Messwerten von der Entladung eines Kondensators kannst du mit verschiedenen Methoden die konkreten Werte für die Parameter der Exponentialfunktion, die die gemessene Größe beschreibt, bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Aus Messwerten von der Entladung eines Kondensators kannst du mit verschiedenen Methoden die konkreten Werte für die Parameter der Exponentialfunktion, die die gemessene Größe beschreibt, bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel Zu den Aufgaben

Magnetfeld von geraden Leitern

Grundwissen

  • Wenn durch einen geraden und sehr langen Leiter ein elektrischer Strom fließt, dann haben die Feldlinien des magnetischen Feldes die Form von Kreisen, die in Ebenen senkrecht zu dem Leiter verlaufen und ihren Mittelpunkt im Leiter haben.
  • Die Orientierung des Feldes kann man mit der ersten Rechte-Faust-Regel bestimmen.
  • Ist \(I\) die Stärke des Stroms im Leiter und \(r\) der Abstand eines Punktes zum Leiter, dann berechnet sich der Betrag der magnetischen Flussdichte \(B\) an diesem Punkt durch \(B = {\mu _0} \cdot \frac{1}{{2 \, \pi \cdot r}} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn durch einen geraden und sehr langen Leiter ein elektrischer Strom fließt, dann haben die Feldlinien des magnetischen Feldes die Form von Kreisen, die in Ebenen senkrecht zu dem Leiter verlaufen und ihren Mittelpunkt im Leiter haben.
  • Die Orientierung des Feldes kann man mit der ersten Rechte-Faust-Regel bestimmen.
  • Ist \(I\) die Stärke des Stroms im Leiter und \(r\) der Abstand eines Punktes zum Leiter, dann berechnet sich der Betrag der magnetischen Flussdichte \(B\) an diesem Punkt durch \(B = {\mu _0} \cdot \frac{1}{{2 \, \pi \cdot r}} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).

Zum Artikel Zu den Aufgaben

Magnetfeld von langen Zylinderspulen

Grundwissen

  • Wenn durch eine lange Zylinderspule ein elektrischer Strom fließt, dann herrscht im Innenraum der Spule ein homogenes Magnetfeld. Die Feldlinien verlaufen dort parallel zur Zylinderachse.
  • Die Orientierung des magnetischen Feldes kann man mit der zweiten Rechte-Faust-Regel bestimmen.
  • Ist \(N\) die Anzahl der Windungen und \(l\) die Länge der Spule sowie \(I\) die Stärke des Stroms durch die Spule, dann berechnet sich der Betrag \(B\) der magnetischen Flussdichte im Innenraum der Spule durch \(B = {\mu _0} \cdot \frac{N}{l} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).
  • Befindet sich im Innenraum der langen Zylinderspule ein Kern aus einem ferromagnetischen Stoff mit der relativen Permeabilität \(\mu_{\rm{r}}\), dann berechnet sich der Betrag \(B\) der magnetischen Flussdichte im Innenraum der Spule durch \(B = \mu _0 \cdot \mu_{\rm{r}} \cdot \frac{N}{l} \cdot I\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn durch eine lange Zylinderspule ein elektrischer Strom fließt, dann herrscht im Innenraum der Spule ein homogenes Magnetfeld. Die Feldlinien verlaufen dort parallel zur Zylinderachse.
  • Die Orientierung des magnetischen Feldes kann man mit der zweiten Rechte-Faust-Regel bestimmen.
  • Ist \(N\) die Anzahl der Windungen und \(l\) die Länge der Spule sowie \(I\) die Stärke des Stroms durch die Spule, dann berechnet sich der Betrag \(B\) der magnetischen Flussdichte im Innenraum der Spule durch \(B = {\mu _0} \cdot \frac{N}{l} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).
  • Befindet sich im Innenraum der langen Zylinderspule ein Kern aus einem ferromagnetischen Stoff mit der relativen Permeabilität \(\mu_{\rm{r}}\), dann berechnet sich der Betrag \(B\) der magnetischen Flussdichte im Innenraum der Spule durch \(B = \mu _0 \cdot \mu_{\rm{r}} \cdot \frac{N}{l} \cdot I\).

Zum Artikel Zu den Aufgaben

Magnetfeld von HELMHOLTZ-Spulen

Grundwissen

  • Als HELMHOLTZ-Spule bezeichnet man eine Anordnung von zwei kurzen Spulen mit großem Radius \(R\) und gleicher Windungszahl, die im Abstand \(R\) auf derselben Achse parallel aufgestellt und gleichsinnig von Strom durchflossen werden. In der Mittelebene der beiden Spulen entsteht ein Bereich mit weitgehend homogenem magnetischem Feld.
  • Die Orientierung des magnetischen Feldes kann man mit der zweiten Rechte-Faust-Regel bestimmen.
  • Ist \(N\) die Anzahl der Windungen und \(R\) der Radius der Spulen sowie \(I\) die Stärke des Stroms durch die Spule, dann berechnet sich der Betrag \(B\) der magnetischen Flussdichte in der Mittelebene des Spulenpaars durch \(B = {\mu _0} \cdot \frac{{8 \cdot N}}{{{{\sqrt {125} }} \cdot R}} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als HELMHOLTZ-Spule bezeichnet man eine Anordnung von zwei kurzen Spulen mit großem Radius \(R\) und gleicher Windungszahl, die im Abstand \(R\) auf derselben Achse parallel aufgestellt und gleichsinnig von Strom durchflossen werden. In der Mittelebene der beiden Spulen entsteht ein Bereich mit weitgehend homogenem magnetischem Feld.
  • Die Orientierung des magnetischen Feldes kann man mit der zweiten Rechte-Faust-Regel bestimmen.
  • Ist \(N\) die Anzahl der Windungen und \(R\) der Radius der Spulen sowie \(I\) die Stärke des Stroms durch die Spule, dann berechnet sich der Betrag \(B\) der magnetischen Flussdichte in der Mittelebene des Spulenpaars durch \(B = {\mu _0} \cdot \frac{{8 \cdot N}}{{{{\sqrt {125} }} \cdot R}} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).

Zum Artikel Zu den Aufgaben

Kraft zwischen Strömen

Grundwissen

  • Elektrische Ströme üben aufeinander Kräfte aus; diese Kräfte bezeichnen wir als magnetische Kräfte.
  • Alle magnetischen Erscheinungen beruhen auf diesen magnetischen Kräften: Der Permanentmagnetismus beruht auf stromartigen Effekten in den Atomen, der Erdmagnetismus beruht auf dem Strom von elektrisch leitender Flüssigkeit im äußeren Erdkern.

Zum Artikel
Grundwissen

  • Elektrische Ströme üben aufeinander Kräfte aus; diese Kräfte bezeichnen wir als magnetische Kräfte.
  • Alle magnetischen Erscheinungen beruhen auf diesen magnetischen Kräften: Der Permanentmagnetismus beruht auf stromartigen Effekten in den Atomen, der Erdmagnetismus beruht auf dem Strom von elektrisch leitender Flüssigkeit im äußeren Erdkern.

Zum Artikel Zu den Aufgaben

Bestimmung der magnetischen Kraft

Grundwissen

  • Herrscht an einem Punkt ein magnetisches Feld mit bekannter Richtung, Orientierung und bekanntem Betrag \(B\) der magnetischen Flussdichte und befindet sich an diesem Punkt ein Leiterstück der Länge \(l\), durch das ein Strom der Stärke \(I\) fließt, dann kannst du die Richtung, die Orientierung und den Betrag der magnetischen Kraft \(\vec F_{\rm{mag}}\) auf dieses Leiterstück bestimmen.
  • Die Richtung und die Orientierung der magnetischen Kraft \(\vec F_{\rm{mag}}\) auf das Leiterstück bestimmst du mit Hilfe der Drei-Finger-Regel der rechten Hand (Daumen in elektrische Stromrichtung, Zeigefinger in Magnetfeldrichtung → Mittelfinger in Kraftrichtung).
  • Den Betrag \(F_{\rm{mag}}\) der magnetischen Kraft auf das Leiterstück berechnest du mit der Formel \({F_{{\rm{mag}}}} = I \cdot l \cdot  B \cdot \sin \left( \varphi \right)\), wobei \(\varphi\) die Weite des Winkels zwischen \(\vec B\) und \(\vec I\) ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Herrscht an einem Punkt ein magnetisches Feld mit bekannter Richtung, Orientierung und bekanntem Betrag \(B\) der magnetischen Flussdichte und befindet sich an diesem Punkt ein Leiterstück der Länge \(l\), durch das ein Strom der Stärke \(I\) fließt, dann kannst du die Richtung, die Orientierung und den Betrag der magnetischen Kraft \(\vec F_{\rm{mag}}\) auf dieses Leiterstück bestimmen.
  • Die Richtung und die Orientierung der magnetischen Kraft \(\vec F_{\rm{mag}}\) auf das Leiterstück bestimmst du mit Hilfe der Drei-Finger-Regel der rechten Hand (Daumen in elektrische Stromrichtung, Zeigefinger in Magnetfeldrichtung → Mittelfinger in Kraftrichtung).
  • Den Betrag \(F_{\rm{mag}}\) der magnetischen Kraft auf das Leiterstück berechnest du mit der Formel \({F_{{\rm{mag}}}} = I \cdot l \cdot  B \cdot \sin \left( \varphi \right)\), wobei \(\varphi\) die Weite des Winkels zwischen \(\vec B\) und \(\vec I\) ist.

Zum Artikel Zu den Aufgaben